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Introduction
Humans view scenes with a series of eye fixations. The eye move-
ments are controlled with bottom-up and top-down mecha-

| nisms. In this study, we investigate the role of the stimulus. In |
| order to do this, we compare the results of human experiments |

| with computational models of visual attention.

Which visual features underlie the fixations?
Canwe predict the fixations with bottom-up models?
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Methods

A. Analysis of fixation points
The saliency of the fixation points on an image is compared
with the average saliency of that image.

Saliency measured:
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Locally contrasting points
Center-surround filters on different scales

| A. Analysis of fixation points
| The plots show the average saliency of the human fixations per

of-interest detectors.

The region-of-interest detectors:
Saliency model of Itti et al.
Keypoint selection of SIFT
model (Lowe,2004)

| Saliency Model. The random prediction serves as a bottom-line. |
| Theintra subject correlation as a top-line.

Predicting eye fixations
with SIFT
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Predicting eye fixations
with the Saliency Model
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Eye track experiment
- 43 participants
3 setsimages (see figure)
10images per set
Each image is viewed 4 times (including 2
mirrored versions) for 5 seconds
Free-viewing, no specific task

Results

| Some observations: _
- Both model predict fixations significantly better than ran- |
dom, and significantly worse than the intra subject correla- |

tion.

lation show that participants are interested in parts that can-
notbe explained by the saliency of the stimulus

SIFT predicts better than SM (except for nature), and on all
categories better than the intensity part of SM. (not shown)

- Difference between model prediction and intra subject corre- .

Similar to section A, fixations on mugs and nature images are :
harder to predict. o
|
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image category, relative to the average saliency in the images.

Relative saliency of fixations Relative saliency of fixations

with the Saliency Model

== Intensity variance
&= Color variance
1 Saliency model

1 Total Saliency Model
== Intensity
== Color

= Orientation
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Some observations:
Overall, the saliency measures of the human fixations is sig-
nificantly higher than the average saliency.
Mugs and nature images, low saliency. Reasons:
- Nature: many salient parts all over the image
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Discussion
Participants fixate on more salient parts of the images
Fixation strategies among categories cannot be compared,
caused by differences inimage structure

Bottom-up models predict fixations better than random, but |

worst than the intra subject correlation:

- Top-down control plays arole

The mechanism for selecting interest points in SIFT performs
better than that of SM

Future work: bottom-up and top-down control
Hypotheses: fixations are more salient on images with little
semantic content (Parkhusrt and Ernst, 2003)
Experiment: semantic images and transformed versions
with no meaning, but the same amount of saliency

- Mugs: too few salient parts. Fixations on low-salient parts.
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Within SM, color is most present in the human fixations, ori-
entation least.
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