# **Object Recognition: From Man to Machine**

Gert Kootstra, Artificial Intelligence, University of Groningen, The Netherlands



### 1. Paying Attention

#### **Study 1: Where Do Humans Pay Attention To?**

#### Introduction

- People view actively: using eye movements to select interesting information.
- Eye movements are top-down (model-driven) and bottom-up (stimulus-driven) controlled.
- Question: Can we predict eye movements with BU saliency models? And how?

#### Methods

- Different saliency models
- · Saliency model of Itti et al. (1998)
- · SIFT keypoint detection (Lowe, 2004)
- Symmetry models (Heidemann, 2004; Reisfeld et al., 1995)
- Eye tracking experiment
- · 43 participants
- Free-viewing
- 4 categories of 10 images





#### Measure

 Correlation between saliency models and human fixation density maps.

#### Results

- High correlation symmetry models.
- Also on non-symmetrical images.
- Saliency model and SIFT correlate less, but still significantly.

# Symmetric Images 1.17 — see admit 1.17 — see admit 1.17 — see admit 1.17 — see admit 1.18 — see

#### Discussion

- Symmetry seems to attract human visual attention.
- Future work: test symmetry for computer vision

#### Study 2: Using Attention Models for 3D Object Recognition

#### Introduction

- Use saliency models to select regions of interest (Rol) in images.
- Gather SIFT keypoints only from Rol's.

#### "Attentional SIFT" model



#### **Experiments**

- Image dataset (Kushal & Ponce, 2006)
- 9 objects from 7-12 different viewpoints.
- · 80 images with objects in cluttered scenes.

#### Results

# Computation time Recognition

- Attentional SIFT uses far less keypoints, which improves computation time.
- Moreover, recognition performance, measured by nr of correct matched keypoints, improves slightly (though not significant).

#### Discussion

- Using attentional (saliency) models improves 3D object recognition with SIFT.
- Future work: test on larger datasets.

## 2. Exploring the Objects

#### Study 3: Active Vision for 3D Object Recognition in Real-World

#### Introduction

Model

around the object

keypoints from different views

ground using optical flow:

 Difficulties for object recognition in the realworld:

Solution in nature: exploration (see fig.

Exploration to view objects from multiple view

Exploration: construct 3D model by moving

Representation of object by collection of SIFT

Active vision to segment object from back-

· Object points move consistent with each

Background points have different motion

points and to segment them from background

- Object constancy problem (see fig.)
- Objects are positioned in highly cluttered environments



SIFT keypoints

cluster robust keypoints

associate with object

#### **Keypoint clustering**

- Standard SIFT results in many keypoints. We use a clustering method to cluster keypoints.
- Smaller keypoint database improves computation time for recognition.
- Clustering method:
  - Growing When Required (GWR) network (Marsland et al. 2002)
  - Based upon Kohonen SOM, but adjusts number of nodes (=clusters)

#### Result

Successful segmentation from background



 Large improvement in learning and recognizing in cluttered environments using active vision, while using less keypoints



 The GWR-SIFT reduces the amount of keypoints with 36%, while resulting in a better performance than standard SIFT with 36% keypoints

#### Discussion

- Exploring objects makes object recognition in the real-world possible
- GWR reduces nr of keypoints. More research to increase recognition



Heidemann, G. (2004) Focus-of-attention from local color symmetry. *IEEE Transaction of Pattern Analysis and Machine Intelligence*, 26(7): 817-830.

Itti J. Koch, C. & Niebur, F. (1998) A model of saliancy-based visual attention for rapid

Itti, L., Koch, C,& Niebur, E. (1998) A model of saliency-based visual attention for ray scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1 1254-1259.

ushal, A. &Ponce, J. (2006) Modeling 3D objects from stereo views and recognizing in the photographs. *Proc. European Conference on Computer Vision*, 2006.

Lowe, D. (2004) Distinctive image features from scale-invariant keypoints. *International Journal of Computer Vision*, 60(2): 91-110.

Marsland, S., Shapiro, J. & Nehmzow U. (2002) A self-organising network that grows

Reisfeld, D., Wolfson, H., Yeshurun, Y. (1995). Context-free attentional operators: tring generalized symmetry transform. *International Journal of Computer Vision*, 14(2): 191