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Abstract. Most visual Simultaneous Localization And Mapping (SLAM) meth-
ods use interest points as landmarks in their maps of the environment. Often
the interest points are detected using contrast features, for instance those of the
Scale Invariant Feature Transform (SIFT). The SIFT interest points, however,
have problems with stability, and noise robustness. Taking our inspiration from
human vision, we therefore propose the use of local symmetry to select interest
points. Our method, the MUlti-scale Symmetry Transform (MUST), was tested
on a robot-generated database including ground-truth information to quantify
SLAM performance. We show that interest points selected using symmetry are
more robust to noise and contrast manipulations, have a slightly better repeata-
bility, and above all, result in better overall SLAM performance.

1 Introduction

One of the fundamental tasks of an autonomous robot is to build a map of the envi-
ronment and use it for self localization. The problem of Simultaneous Localization and
Mapping (SLAM) has therefore received much attention in the last decade [1]. Nowa-
days, approaches using laser range finders are very successful. SLAM using vision,
however, remains a challenging research topic, e.g., [2, 3].

Using a camera has the advantage over a laser-range finder that it is a passive sen-
sor that is low cost, low power, and lightweight. A camera furthermore provides a rich
source of information, which enables the use of sophisticated detection and recogni-
tion methods. The difficulty, however, is to extract relevant information from the high-
dimensional visual data in real time. In this paper, we propose the use of local symmetry.

Most visual SLAM systems use visual landmarks to create a map of the robot’s
environment. It is important to select robust, stable landmarks that will be recognizable
in future encounters. Furthermore, the number of selected landmarks should be limited,
since the computational complexity of the SLAM algorithms strongly depends on the
number of landmarks.

Usually, interest-point detectors are used for landmark selection. Most approaches
use contrast features to detect interest points. Examples are the Scale-Invariant Feature
Transform (SIFT) [4, 5], Speeded Up Robust Features (SURF) [6, 7], and Harris corners
[8]. We propose the use of local symmetry to detect interest points. We compare our
method with SIFT, since it is among the best performing interest point detectors in
SLAM [9], as well as in object recognition [10].

Although systems using SIFT have successfully been applied to SLAM, there are
three important drawbacks. The interest points are very susceptible to noise, not all se-
lected landmarks are recognized when the robot returns to a previously visited location,
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Fig. 1. The Fast Radial Symmetry Transform [21]. Each pixel in the
image votes for symmetry at a given radius r. In this example, two
pixels p1 and p2 are shown. Using the orientation of a pixel’s gra-
dient, a vote is made for bright symmetrical forms on a dark back-
ground at p−, and the reverse, p+. Doing this for all pixels in the
image gives the symmetry transform of the image, ψr(o, s), at oc-
tave o and scale s.

and too many interest points are found in an image, but only few points are so stable
that they can be tracked over a number of successive frames. Thus SIFT has problems
with robustness, repeatability, and stability.

We propose a landmark selection mechanism using local symmetries instead of lo-
cal contrast, and show that it performs better regarding the above mentioned problems.
Our choice for symmetry is motivated by human behavior. Symmetry is detected very
rapidly, especially when patterns have multiple axes of symmetry [11]. Moreover, hu-
mans pay attention to locally symmetric parts of images [12, 13]. Furthermore, humans
use symmetry to segregate a figure from its background [14]. These findings suggest
that symmetry is used in pre-attentive vision, and can therefore be used for context-free
object segmentation and landmark selection.

Using symmetry to select landmarks exploits the fact that most man-made indoor
environments contain many symmetrical objects and forms. Since symmetry is a strong
non-accidental property, we believe that its use will result in the selection of valuable
landmarks for the visual SLAM system.

Although contrast features have received most attention in computer vision research
(e.g., [4, 15]), symmetry is successfully used in a number of studies. In earlier work, for
instance, Marola [16] used symmetry for detection and localization of objects in planar
images. Symmetry has furthermore been used to control the gaze of artificial vision
systems [17, 18] Heidemann [19] showed that interest points detected with color sym-
metry are robust to noise and 3D object rotation. Moreover, he showed that symmetry
detection results in points that are more robust to changing light conditions than Harris
corners and that these points are more unique compared to other locations in the image.

To detect local symmetry in an image, a number of symmetry operators exist. Re-
isfeld et al. [20], for instance, developed a mirror-symmetry operator by comparing
the gradients of neighboring pixels. Heidemann [19] extended this work to the color
domain. Reisfeld et al. also proposed a radial-symmetry operator that promotes pat-
terns that are symmetric in multiple symmetry axes. A faster operator to detect radial
symmetry, the Fast Radial Symmetry Transform (FRST), is proposed in [21].

In this paper, we use FRST as a basis of our model to determine local symmetry. We
develop the model to a novel scale- and rotation-invariant interest-point detector, which
we call the MUlti-scale Symmetry Transform (MUST). We discuss the use of MUST
for selecting landmarks for visual SLAM.

We show that landmarks selected using local symmetry are more robust to noise
and have a higher repeatability, and require fewer computations. Most importantly, we



show that the overall performance of the SLAM system increases when interest points
are selected using local symmetry instead of SIFT.

2 Methods

In this section we first explain the selection of interest points using local symmetry. We
then discuss the visual buffer to select stable interest points as landmarks. We end with
a description of the Kalman Filter implementation for visual SLAM.

2.1 Interest Points Based on Local Symmetry

As a basis of our interest point detector, we use the Fast Radial Symmetry Transform
[21], and extended it to a multi-scale and rotational-invariant detector, MUST. The basis
of the FRST is given in Fig. 1, and MUST is depicted in Fig. 2.

To obtain a multi-scale interest-point detector, we use a pyramid approach simi-
lar to that used in [4]. The symmetry response is calculated at five spatial octaves,
O = {−1, 0, 1, 2, 3}. In the first octave, -1, the gray-scaled input image, I−1, has twice
the resolution of the original image, similar to [4]. For each next octave, the input im-
age of the previous octave is smoothed with a Gaussian kernel and down-sampled by a
factor of two. Within each octave, there are three scales, s ∈ {0, 1, 2}, with progressive
smoothing. This gives a pyramid of gray-scaled images, Io,s, for a given octave o and
scale s.

The symmetry transform, Ψ(o, s), for octave o and scale s, is calculated by investi-
gating the local radial symmetry at a set of different radii. The size of the radii depends
on the scale s. The set of radii used to calculate the symmetry response is defined
as Rs = (1 + s/(smax − 1)) · R , where smax = 3 and R = {1, 3, 5}. The symmetry
transform is then:

Ψ(o, s) =
1

|Rs|
∑

r∈Rs

ψr(o, s) (1)

where ψr(o, s) is the symmetry response at octave o and scale s for radius r.
ψr(o, s) is determined by first calculating the gradients of the input image Io,s with

horizontally and vertically aligned Sobel filters, resulting in a magnitude map,Go,s, and
an orientation map, Θo,s. Then, each pixel p votes for the existence of symmetry based
on its gradient, Θo,s(p), its magnitude, Go,s(p) and the given radius r. This is related
to the Hough transform. A pixel votes for the existence of both a bright symmetrical
form on a dark background, and a dark symmetrical form on a bright background at
respectively location p+ and p−:

p+ = p+ r · (cosΘo,s(p), sinΘo,s(p)) (2)
p− = p− r · (cosΘo,s(p), sinΘo,s(p)) (3)

where p+ and p− are rounded to the nearest pixel. Subsequently, an orientation pro-
jection map, Or, and a magnitude projection map, Mr, are built. Initially, all values in
these maps are set to zero. Then, for every pixel p, the maps are updated according to:

Or(p+) = Or(p+) + 1 , Or(p−) = Or(p−)− 1 (4)
Mr(p+) = Mr(p+) +Go,s(p) , Mr(p−) = Mr(p−)−Go,s(p) (5)
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Fig. 2. MUST, the MUlti-scale Symmetry Transform. Symmetry is calculated at multiple octaves
and scales. At the first octave, o = −1, the image is double its original size. For every next
octave, the image is down-scaled by a factor two. Within an octave there are three scales with
progressive Gaussian blurring. For every image in the image pyramid, the symmetry response,
ψr(o, s), is calculated at three different radii by applying the symmetry operator. The average
of these responses results in the symmetry map, Ψ(o, s). In the last step, the interest points are
obtained by finding points that have a local maximal or minimal symmetry value. The local
neighborhood of such an interest point is described by the SIFT descriptor.

Finally, the symmetry map for radius r at octave o and scale s is determined by:

ψr(o, s) = Fr ∗Ar (6)

and

Fr(p) = Mr(p) ·Or(p)/kr (7)

whereOr(p) has a upper value of kr, and a lower value of −kr. kr has been experimen-
tally established in [21] at kr = 8 for r = 1, and kr = 9.9 otherwise. Ar is a Gaussian
kernel of size r × r with a standard deviation of 0.25r.

This gives us the symmetry response ψr(o, s) for the radius r at octave o and scale
s. By averaging the symmetry responses over all radii in Rs, according to equation (1),
we obtain the full symmetry response at octave o and scale s, Ψ(o, s).

Next, the interest points in every octave and scale are determined by finding the
points in Ψ(o, s) that are either a maximum or a minimum in the neighborhood of
11×11 pixels. Each interest point i found in the symmetry maps is stored. We store the
following information: (a) the location of the interest point in the original resolution of
the input image, xi = (xi, yi), (b) its scale value, σi = 2oi+si/smax , (c) its symmetry
strength, vi = Ψ(oi, si,xi), (d) its orientation, γi, and (e) the descriptor of the interest
point, di. The later two are described in the next paragraph.

To calculate the orientation and the descriptor of the interest points, we use the
corresponding methods of the SIFT algorithm [4]. The orientation of the interest point
is determined by finding the dominant gradient in the local neighborhood of the interest
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Fig. 3. Two examples images with the MUST and SIFT interest points. The black circles present
the stable interest points that are found in both the current and the previous image. The white
circles depict the unstable interest points that are only found in the current image. The proportion
of stable points is given at the bottom.

point. This orientation is used to obtain a rotationally invariant descriptor of the local
neighborhood patch. The neighborhood is described by histograms of gradients. The
size of the neighborhood depends on the scale value of the interest point. This makes
that the descriptor is also scale invariant. To calculate the histograms of gradients. the
patch is divided in 4 by 4 squares. A histogram of gradients is then calculated for each
square. Since there are 16 squares, and each histogram contains 8 bins, this gives us a
feature vector with 128 values. The magnitude of the feature vector is normalized to
512. For more detailed information about the method to calculate the descriptor, we
refer to [4].

Figure 3 shows the interest points found by MUST on two of the images used in
our experiments as compared to the SIFT interest points. Note that SIFT results in a
large number of interest points, of which many are unstable. MUST, on the other hand,
results in less, but more stable points.

2.2 The Visual Buffer

Both MUST and SIFT result in a large number of interest points when applied to the
camera images taken by the robot. In our experiments, MUST detects on average 40
interest points per image, and SIFT 124. To be practically usable, the state matrix of the
Extended Kalman Filter should contain a few hundred landmarks in total. Furthermore,
most interest points are unstable, and therefore useless for SLAM. We propose a visual
buffer test the stability of the interest points, similar to [2, 5].

The buffer contains the last N camera images. The interest points in the current
image are compared to those in theN−1 previous images. An interest point i passes the
buffer if it meets two criteria: 1) The point matches in at leastM of the previous images.
Two points, i and j, match when the descriptors, di and dj , are sufficiently similar.
This is true when the Euclidean distance is below the threshold τ1: ‖di − dj‖ < τ1,
and when the best-to-next-best ratio is smaller than the threshold δ1: ‖di − dj‖/‖di −
dl‖ < δ1, where dl is the descriptor of the second most-similar region in the previous
image. This ratio ensures uniqueness. Additionally, to avoid spurious interest points,
the symmetry strength of the interest point should be vi ≥ λ · vmax, where vmax is the
strength of the most symmetrical point that is successfully matched in the current image,
2) The estimates of the position of the landmark in the environment are congruent. The
landmark’s position is estimated by triangulation using the bearings of the interest point



in the current image and the previous images, and the displacement of the robot. This
results in a set of estimates of the range and bearing, P = {pk|pk = 〈rk, θk〉∧1 ≤ k ≤
K}. The landmark is accepted if var(R) < ρ, where var is the variance, and R = rk.

2.3 Visual SLAM

We use a standard implementation of the Extended Kalman Filter (EKF) as basis of the
SLAM system [22]. Our method and results, however, are also valid for other SLAM
approaches. We will not discuss the full EKF method, rather only the incorporation of
the landmark observations.

A landmark i with descriptor di that results from the buffer is classified as ei-
ther a new landmark, or a previously observed landmark that is already in the map.
It concerns a previously observed landmark if the landmark in the database with the
most similar descriptor, dj , fulfills three criteria: 1) Similarity in descriptors: ||di −
dj || < τ2, 2) A small best-to-next-best ratio to only match unique landmarks δ2:
||di − dj ||/||di − dl|| < δ2, where dl is the second most similar descriptor in the
database, 3) A small distance in the EKF map, measured by the Mahalanobis distance:√

(xi − xj)T S−1
j (xi − xj) < η, where Sj is the uncertainty covariance matrix, dis-

cussed in the next paragraph.
The landmark is classified as new only if none of the three criteria is fulfilled. For a

new landmark, the state matrix and covariance matrix are augmented using the observa-
tion, zi, and the uncertainty covariance matrix, Si, where zi is set to mean(P), and Si is
determined using the uncertainty of the observation, cov(P), and the uncertainty of the
robot’s position in the EKF. When a landmark is matched with an existing landmark in
the database, zi and Si are used to update the EKF.

3 Experiments

We performed a number of experiments with a Pioneer II DX robot equipped with a
Sony D31 camera to test the use of local symmetry for visual SLAM and to compare it to
using standard SIFT. To be able to repeat the experiments, we created a SLAM database.
This database contains camera images and odometry information, along with the ground
truth position of the robot. The data was recorded in ten different runs, in which the
robot drove four laps of approximately 35 meters through an office environment and
hallway with an average speed of 0.3 m/s. Camera images of 320 x 240 pixels were
stored at 5 Hz. At intervals of one meter, the true location of the robot was logged by
hand. This enabled us to quantify the performance of the SLAM estimation.

SIFT and MUST result in different types of interest points, which might have an in-
fluence on the best settings for the other parameters in the SLAM system. We therefore
optimized the parameters for the visual buffer (N , M , τ1, δ1, and ρ) and for the SLAM
system (τ2 and δ2) for both MUST and SIFT separately. Any differences in performance
can therefore be subscribed to the interest-point detectors.
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Fig. 4. Robustness to noise and changing light condition. The lines show the mean proportion of
matching interest points between the distorted and the original images over 57 runs. The gray
areas around the lines display the 98% confidence intervals. Note that these intervals are small,
and therefore not very visible.

3.1 Robustness

To test the performance of our model for landmark selection in indoor environments, we
took images from one of the runs in our database with intervals of 3 meters to represent
the complete environment. To test the noise robustness of MUST, we smoothed the
image with a Gaussian kernel, and added Gaussian noise to the pixels. In addition, we
manipulated the contrast and brightness of the images to test the robustness to changing
light conditions1. The reason to not use the dataset in [23] is that it contains images of
outdoor scenes, which contain fewer symmetrical objects than indoor environments.

The robustness is measured by the proportion of matching interest points between
the original and the manipulated images. Two interest points match when criterion 1 of
the visual buffer (see Sect. 2.2) is met, where τ1 = 0.6 and δ1 = 0.75. Additionally, the
distance between the two points in the image should be less than 3 pixels.

3.2 Repeatability

For good SLAM performance, it is crucial that landmarks added to the map are observ-
able on future encounters. We therefore test the repeatability of the interest points. For
every experimental run, we selected three parts of the robot’s trajectory, and aligned the
sequences of images of the four consecutive laps that are approximately at the same po-
sition. The interest points in the images in the first lap are then compared to the images
taken at approximately the same position in the later laps.

The average proportion of interest points that are matched in lap 2, 3, and 4 is the
measure of repeatability. An interest point matches when criterion 1 of the visual buffer

1 The functions used for the manipulations are: (1) Gaussian pixel noise: I ′(x, y) = I(x, y) +
X(αg), where I(x, y) ∈ [0, 1] is the intensity of pixel (x, y), and X(αg) is a random sample
from the normal distribution N(0, α2

g). (2) Gaussian smoothing: I ′ = I ∗ Gs, where Gs is a
Gaussian mask of size s×s, with a standard deviation of σ = s/6. (3) Contrast manipulation:
I ′(x, y) = I(x, y) + αc

`
I(x, y)− Īx,y

´
, where Īx,y is the local average in a neighborhood

of 21× 21 pixels around pixel (x, y). The contrast for αc > 0, and decreases otherwise. (4)
Brightness manipulation: ′(x, y) = I(x, y)log αb/log0.5. For α > 0.5, the pixels are bright-
ened, for α < 0.5, the pixels are darkened.
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Fig. 5. a) The mean repeatability proportion over the ten runs. The error bars give the 95% con-
fidence intervals. b) The mean estimation error over the ten runs. The 95% confidence intervals
are represented by the error bars.

is met (see section 2.2), where where τ1 = 0.6 and δ1 = 0.75. Unlike the evaluation
of the robustness, we do not put a constraint on the spatial distance between the two
observed interest points, since there is variation in the exact position and orientation of
the robot. This may cause relatively large displacements of the interest points.

3.3 Visual SLAM Performance

Because we logged the ground-truth position of the robot at intervals of 1 meter, we can
quantify the performance of the complete visual SLAM system. For that, we compare
the estimated position of the robot made by the EKF with the ground-truth position.
The SLAM performance is the average Euclidean distance between the estimated and
ground-truth positions in the last of the four laps.

4 Results

4.1 Robustness

Figure 4 shows the robustness results. The proportion of matching interest points be-
tween the original and the manipulated images are displayed on the y-axis. In Fig. 4a
and 4b, the results for the addition of noise are given. MUST is significantly less af-
fected by the noise than SIFT. The performance of MUST is more than twice that of
SIFT, making it much more robust to noise. Figure 4c shows the performance with
respect to contrast manipulation. Although the performance of both methods is similar
for the contrast enhancement, MUST shows a significantly better performance when the
contrast is reduced. Also with enhanced brightness the use of MUST results in consid-
erably better performance (see Fig. 4d). There is no difference with reduced brightness.

4.2 Repeatability

The repeatability results can be appreciated in Fig. 5a. The first two bars show the
repeatability results for all detected interest points, in other words when the visual buffer



is not used. The repeatability of the MUST interest points is significantly higher then
that of the SIFT points. The two other groups of bars display the results when the
buffer is used, where the buffer parameters are optimized both per run and overall with
an additional contraint that the buffer does not result in too few (< 50) or too many
(> 350) landmarks per run. MUST has a slightly better result per run, whereas overall,
SIFT has a somewhat better repeatability. The differences, however, are not significant.

4.3 Visual SLAM Performance

The SLAM performance is displayed in Fig. 5b. The results for the best settings per run
show that MUST results in a significantly lower estimation error. Also when the overall
best settings are used, MUST performs significantly better than SIFT. This suggests that
MUST selects better quality landmarks.

Not only does MUST result in better performance, it also reduces the amount of
selected landmarks. MUST selects on average 40 interest points per image, and SIFT
124. This greatly reduces the number of computations in the matching process, which
is quadratic in the number if interest points. Since both models are similarly fast in
detecting interest points in the images, the full SLAM system is faster using MUST.

5 Discussion

In this paper, we proposed a new interest point detector, MUST, for landmark selection
based on local symmetry. The model exploits the presence of symmetrical forms in
indoor environments. The interest points selected by our model are less sensitive to
noise and changing light conditions and more stable than points selected on the basis of
contrast by the SIFT model [4]. The repeatability of all selected interest points is higher
for our model than for SIFT. Most importantly, the use of symmetry results in better
visual SLAM performance. This shows that exploiting symmetry results in valuable and
robust landmarks for the representation of the environment. Moreover, MUST results
in less interest points, which improves the processing time of the SLAM system.

Although the visual buffer successfully reduces the number of landmarks in the
map, its effectiveness can be further enhanced, judging from the fact that the repeata-
bility drops when the visual buffer is used.

Symmetry detection can results in the selection of complete objects. This could
result in semantically more meaningful landmarks and maps of the environment, which
could be exploited, for instance, in human-robot interaction.

We can conclude that local symmetry provides robust and valuable landmarks, that
results in improved visual SLAM performance.
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