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Abstract— This paper focuses on the fast and automatic
detection and segmentation of unknown objects in unknown
environments. Many existing object detection and segmentation
methods assume prior knowledge about the object or human
interference. However, an autonomous system operating in the
real world will often be confronted with previously unseen
objects. To solve this problem, we propose a segmentation ap-
proach named Automatic Detection And Segmentation (ADAS).
For the detection of objects, we use symmetry, one of the Gestalt
principles for figure-ground segregation to detect salient objects
in a scene. From the initial seed, the object is segmented by
iteratively applying graph cuts. We base the segmentation on
both 2D and 3D cues: color, depth, and plane information.
Instead of using a standard grid-based representation of the
image, we use super pixels. Besides being a more natural
representation, the use of super pixels greatly improves the
processing time of the graph cuts, and provides more noise-
robust color and depth information. The results show that both
the object-detection as well as the object-segmentation method
are successful and outperform existing methods.

I. INTRODUCTION

As humans, robots need the ability to autonomously learn
and explore new environments by exploring and manipulat-
ing unknown objects. The difficulty with unknown objects
in unknown environments is that no prior knowledge of the
object is available. Top-down search and segmentation meth-
ods can therefore not be used. We focus on the bottom-up
detection and segmentation of objects. Real-time processing
is furthermore of great importance for a robot interacting
with the environment. In this paper, we present a method for
fast and automatic detection and segmentation of objects.
This is in contrast to methods not developed for a robotic
application, with run times in the order of minutes [1].

Fig. 1 shows the humanoid head used in our lab along with
two images from the left foveal and wide-field cameras. In
previous work we dealt with object detection in the wide-
field views [2], while here we present object detection and
segmentation using the foveal cameras.

Many existing segmentation methods, for instance meth-
ods based on graph cuts [1], [3], [4], and our current work
using 3D information and belief propagation [5], presume
a selection of foreground or background parts by a human
operator from where to start the segmentation. Other methods
use prior knowledge about the object to perform a top-down
segmentation, e.g., [6], [7]. A robot dealing with unknown
objects, however, cannot rely on either human input, or top-
down information. Instead, we propose a bottom-up detection
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Fig. 1. A close up of our humanoid head. The upper lenses capture the
wide-field view (upper right image) and the lower lenses the foveal view
(lower right image)

and segmentation method using a saliency method based on
local symmetry in the image to initiate the segmentation.

Many saliency method calculate saliency by center-
surround contrasts of basic features, like the well-known
model of Itti et al. [8] that utilizes brightness, color, and
orientation contrasts. We will refer to this model henceforth
as the contrast-saliency model. This model has been used,
for instance, in [2] to guide the attention of the robot for
the sake of segmentation. However, when interpreting a
scene, humans pay attention to objects, not so much to basic
features. Hence, configural features play an important role in
human visual attention. A configural feature is a higher-level
feature that integrates different parts of a figure. Symmetry,
for instance, can be a stronger visual attractor than basic
features [9]. Human eye fixations can also be predicted
based on symmetry in the image [10]. Contrast focuses near

Fig. 2. To let our robot deal with unknown objects in its environment,
we propose a bottom-up method for the fast and automatic detection and
segmentation of objects. The robot perceives the scene with its stereo
cameras. Objects are detected based on symmetry, and fixation points
are generated to initialize segmentation. Based on an oversegmentation of
the image into super pixels, an iterative graph-cut procedure segregates
foreground from the background using color, depth, and plane information.



corners and edges in the image, whereas symmetry highlights
symmetrical configurations which often coincide with objects
in the scene. The ability of symmetry to detect objects is also
supported by the Gestalt theory, which assumes symmetry
to be one of the principles for figure-ground segregation.
In [11], symmetry has shown to outperform the contrast-
saliency model in detecting salient objects in the scene.

Once a hypothesis of an object is made in the detection
step, it should be segmented from the background. Most
current segmentation methods are based on Markov Random
Fields and use graph cuts to efficiently find the segmentation
of the image that minimizes a particular energy function [3].
The computational complexity of the segmentation process
heavily depends on the number of points in the graph. To
obtain real-time segmentation, we propose a representation
of the image by super pixels, thereby greatly reducing the
number of points, while preserving the important boundaries
in the image. Moreover the use of super pixels provides
more noise-robust color and depth information and enables
us to estimate local plane information. Super pixels has
previously been used for segmentation using graph cuts [12],
belief propagation [6], and the detection of learned object
information [7]. In [13], super pixels are clustered into image
segments using texture and brightness similarities and the
smoothness of the contours.

The utilization of disparity information apart from color
information has been shown to be beneficial in robotic vision
[1], [5], [12]. The advantage of using disparities is that it
enables to separate color differences within the object from
color difference between the object and the background.
This makes the segmentation of both homogeneously and
heterogeneously colored objects possible. A problem how-
ever arises at object points close to its supporting surface.
The disparities of the object and the surface are similar at
these points. We propose to solve this problem by making
additional use of local and global plane information. Based
on differences in orientation and depth of the local planes,
the object parts and the surface parts can be separated.

The contribution of this paper is a fast and automatic
method used in a robotic scenario for 1) detection of un-
known objects in realistic environments using local symme-
try, and 2) real-time segmentation of the object by iteratively
applying graph cuts based on a super-pixel representation of
the image using color, depth, and plane information. The
results show that our object-detection method is successful
and outperforms the saliency model of Itti, Koch, and Niebur
[8]. Furthermore, our object-segmentation method outper-
forms the method proposed in [1] in terms of the quality
of segmentation and above all in terms of computation time.

II. AUTOMATIC DETECTION AND SEGMENTATION

Our Automatic Detection And Segmentation (ADAS)
method consists of two parts, the object-detection method
and the segmentation method. The object-detection method
selects a number of most salient point in the image as a
fixation points, fi, using the Gestalt principle of Symme-
try. Based on a fixation point, the segmentation method

Fig. 3. An example of results of the super-pixel segmentation. The first
row shows the original image on the left and disparity map on the right. The
second row shows the super-pixel image and the super-pixel disparity map.
The number of pixels is reduced from 307200 regular pixels to 202 super
pixels. It can also be appreciated that the noise in the original disparity map
is reduced

iteratively segments the figure from its background using
color, binocular disparity, and plane information. By utilizing
a super-pixel representation of the image we achieve real-
time performance while reducing the influence of noise. The
object-detection method that we use has been presented in
[10] and will therefore not be further detailed. The next
paragraphs describs the object-segmentation method. We first
discuss the image information. Next, the different processing
steps of the method are outlined and discussed in detail.

Image information: The object segmentation is based on
color, distance, and plane information. The color distribution
of every super pixel s is represented as a two-dimensional
histogram, Hs, in ab-space, where a and b are the cor-
responding dimensions in the CIE Lab color space. This
color space is perceptually uniform, which is preferable when
comparing colors of different super pixels.

The distance information of every super pixel is repre-
sented by {µd

s , σ
d
s}, where µ

d
s is the mean and σ

d
s is the

standard deviation of the binocular disparities, δi ∈ [0, 1], of
all points in the super pixel. For many points in the images
the disparity cannot be calculated due to insufficient texture,
or due to the fact that the point is occluded in one of the
images (see Fig. 3).

Finally, we assume that the objects are placed on a planar
surface. To detect this surface, we estimate the dominant

Fig. 4. An example of the graphical model used fro segmentation. Initially,
all super pixels are connected to the source (red) and sink (blue). In the final
segmentation, the points are either connected to the source or to the sink
(blue and red lines). The connections between neighboring super pixels are
shown with green lines.



plane based on the disparities in the total image. To test
if the super pixels are part of the dominant plane, we also
estimate the plane of every super pixel based on its disparity
information. A plane is defined as d = αx + βy + γ. Using
the method that we proposed in [5], we efficiently estimate
the plane parameters for the dominant plane, {αD, βD, γD}
and for every individual super pixel, {αs, βs, γs}.

A. Processing steps

We use a graphical model to solve the figure-ground
segmentation. The layout of the graph is based on a super-
pixel representation of the image. A graph-cut method is
used to minimize the energy in the model [14], [3]. The
segmentation method consists of the following steps:

1) Initial segmentation of the image into super pixels.
2) Initial segmentation of fore- and background.
3) Update of fore- and background information.
4) Repeat until convergence of the figure-ground labeling:

a) Graph-cut segmentation.
b) Update of fore- and background information.

5) All super pixels connected to the super pixel fixated
on are foreground.

The different steps are detailed in the following subsections.

B. Super pixels (step 1)

To achieve real-time performance, we segment the camera
image into super pixels by clustering regions in the image
that are more or less homogeneous in color. To deal with
noise in the image, we use an image-pyramid based seg-
mentation method that makes an initial segmentation on a
low-resolution version of the image that is then successively
refined on higher resolutions [15]. We use the method as
implemented in OpenCV. Since we are not interested in too
small super pixels, we merge all super pixels that contain
less than 50 pixels with the neighboring super pixel that is
closest in color.

This super-pixel segmentation method typically transforms
an image of 640 × 480 = 307200 pixels to 50 − 200 super
pixels. This yields a vast improvement of the computational
complexity of the Markov Random Field. Another advantage
of the super-pixel representation is that the image informa-
tion can be collected over the whole super pixel, making our
method less susceptible to noise. Fig. 3 shows an example.

C. Initial segmentation (step 2)

Based on the fixation point from the object-detection
method, the initial set of foreground pixels becomes F =
{f}, where f is the index of the super pixel containing the
fixation point. The set of background pixels then becomes
B = S − F , where S is the total set of super pixels.

D. Updating fore-/background information (step 3)

Based on this initial figure-ground segmentation, the in-
formation of the foreground, IF, and background, IB, is

set. The foreground information consists of the color his-
togram of the foreground and the disparity information of
the foreground: IF = {CF,DF}. The background infor-
mation consists of the color histogram of the background
and information about the dominant plane in the image:
IB = {CB,PB}. The color histograms of respectively the
fore- and background become:

CF(a, b) =
�

s∈F
Cs(a, b), CB(a, b) =

�

s∈B
Cs(a, b) (1)

The mean and standard deviation of the disparities in the
foreground, DF = {µd

F, σ
d
F}, become:

µ
d
F =

1�
s∈F |Ds|

�

s∈F

�

i∈Ds

δi (2)

σ
d
F =

��
s∈F

�
i∈Ds

(δi − µ
d
F)2

�
s∈F |Ds| − 1

(3)

where Ds is the set of all valid disparity values δi ≥ 0 of
points contained in super pixel s. The mean and variance can
be efficiently computed from the already computed µ

d
s and

σ
d
s values. Finally, the background information is completed

by adding the parameters of the dominant plane in the image,
which is likely to be the surface on which the object is
placed: PB = {αD, βD, γD}.

E. Graph-cut segmentation (step 4a)

The graph is setup based on the super-pixel representation
of the image. All super pixels are connected to the source
and the sink (t-links) and horizontal connection are made
between all neighboring super pixels (n-links) (see Fig. 4).
The goal of the graph cut is to find a labeling l that assigns
a label ls ∈ {0, 1} to every super pixel s ∈ S so that the
energy function E(l) is minimized. Adopting the notation
used in [14], the energy function is defined as:

E(l) =

data� �� ��

s∈S
Ds(ls) +

smooth� �� �
α

�

{s,t}∈N

Vs,t(ls, lt) · T (ls �= lt) (4)

where N is the set of neighboring super pixels s and t. The
smoothing term has the role to obtain a smooth segmentation.
The term penalizes for cuts in the segmentation between two
super pixels that are similar. Discontinuities in the image are
preserved by using the indicator function T (·), which is 1 if
the argument is true (i.e., if the labels are different) and 0
otherwise. The data term measures the disagreement between
the labeling and the back- and foreground information. α is
the relative influence of the smoothing term with respect to
the data term. We used α = 0.1 in our experiments.

The energy of the data term, Ds(ls), is defined as follows:
- if s = f , that is the fixated super pixel,

Df (lf ) =
�

1000 if ls = 0
0 if ls = 1 (5)
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Fig. 5. Illustration of the probabilities for every super pixel to belong to the foreground. Left: p1

CF
, based on color. Middle p1

DF
, based on disparity.

Right: 1− p1
PB

, the probabilities of not belonging to the dominant plane. The super pixel fixated on is marked with a white boundary. Black super pixels
have no valid disparity information. The image is best viewed in color.
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- else,

Ds(ls) =
�

p
1
CF

if ls = 0
p
0
CB

if ls = 1 (7)

where p
ls
I can be read as the probability of the label of super

pixel s being ls given the information I . Note, however, that
it is not a probability in the strict sense. The different p

ls
I

values are defined as follow. For color:

p
1
CF

= ρ(Cs, CF) (8)
p
0
CB

= ρ(Cs, CB) (9)

where ρ(C1, C2) is the correlation coefficient calculated by
the Pearson’s correlation between color histogram C1 an C2.
Then, for disparity and plane information:

p
1
DF

= e
(µd

s−µF)
2/(σd

F )2 (10)

p
0
PB

=
1
2
e
−10·θ +

1
2
e
−10·∆d (11)

where θ is the angle between the dominant plane in the image
and the estimate plane of the super pixel. ∆d is the distance
between the centroid of the super pixel and the dominant
plane. 1−p

0
PB

becomes high if both θ and ∆d are low. This
results in low costs in eq (6) for labeling a super pixel as
background that has both the same orientation and disparity
as the dominant plane, as it is probably part of the dominant
plane. Super pixels that differ in either the orientation or in
depth are more likely to be labeled as foreground. This helps
differentiating parts of the object close to the surface from
the background.

Eq. (5) results in a hard cut assuring that the super pixel
fixated on ends up in the foreground. Eq. (6) causes super
pixels to be labeled as foreground if they are similar to the
foreground information in color or in disparity and are not
part of the dominant plane. This results in the segmentation
of homogeneously colored objects based on color as well as
of heterogeneously colored objects based on the disparity,
while discarding pixels belonging to the dominant plane in
the image. If no valid disparity data is available for the super
pixel, the energy in Eq. (7) is calculated using color only.

1 2 3

0.7

0.8

0.9

1

Nr of fixations
Pr

op
or

tio
n

on
ob

je
ct

a) MSRA Database

Symmetry
Contrast

1 2 3

0.7

0.8

0.9

1

Nr of fixations

b) KOD Database

Symmetry
Contrast

Fig. 6. The object-detection performance

Fig. 5 gives an illustration of the probabilities that super
pixels belong to the foreground. It can be observed from
the probability maps that the object cannot be completely
segmented from the background based on color, disparity,
or plane information alone. Based on color, parts of the
object have low probability, whereas parts in the background
have high probability. Disparity assigns high probabilities to
large parts of the table plane close to the object. Based on
plane information, parts of the background get labeled as
foreground. However, when combining the three measures,
the object can be nicely segmented from the background.

We define the smoothing term, Vs,t(ls, lt), as:

Vs,t(ls, lt) =






1
n (αcp

st
C + αdp

st
D)pst

P if valid disp.

1
nαcp

st
C otherwise

(12)

where n = min(|Ns,Nt|) is the minimal number of neigh-
bors of either super pixel s and t, αc and αd are weights. In
our experiments we obtain good results with αc = 0.9 and
αd = 0.1.

p
st
C = ρ(Cs, Ct) (13)

p
st
D = 1− |µd

s − µ
d
t | (14)

p
st
P = 1− |pls=1

PB
− p

lt=1
PB

| (15)

Equation (12) is applied only when the labels ls and lt are
different, see Eq. (4). If the disparity information is valid, the
costs to split two super pixels in the segmentation are high
if the two super pixels are similar in color or in disparity
and have a similar probability to be part of the dominant
plane. This promotes the consistent labeling of super pixels
with similar color or disparity that are either both part of
the dominant plane or are both not part of that plane. If
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Fig. 7. The object-segmentation performance showing the best segmenta-
tion of any of the fixations selected by respectively symmetry and contrast.

valid disparity information is available, the costs are based
on color only.

Our implementation is based on GC optimization [14], [3],
[16] using α/β swap to minimize the energy.

F. Updating fore-/background information (step 4b)

The sets of fore- and background super pixels are updated
to Ft+1 = {s|ls = 1} and Bt+1 = {s|ls = 0}. IF, and IB

are then updated according to eq. (1) and (3). Based on
this updated information, a new graph-cut segmentation is
performed until convergence, that is until Ft = Ft+1.

G. Connected foreground component (step 5)

The graph-cut segmentation can result in the selection
of multiple objects in the foreground. We are interested in
segmenting the fixated object only and therefore select all
super pixels that are connected to the fixated super pixel as
foreground. This gives the final segmentation.

The total algorithm is shown in Algorithm 1.

III. EXPERIMENTS AND RESULTS
The performance of our symmetry-based object-detection

method is compared to the contrast-saliency model of Itti et

al. [8]. The performance of the object-segmentation method
is compared to the segmentation method of Mishra et al.

[1]. We investigate the performance to detect the object in
the scene, and the quality of the segmentation based on the
selected fixation points.

The performance is tested on two datasets. The MSRA
Salient Object Database [17] contains 5.000 images and the
bounding boxes of the most salient object in the images
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Fig. 8. The segmentation performance of the ADAS model using different
types of information: color (C), disparity (D), and plane (P).

Algorithm 1 Automatic Detection And Segmentation.
S ← getSymmetrySaliencyMap(I)
SP ← getSuperPixels(I)
for i = 1 to nrFixations do

fi ← getFixatedSuperPixel(S, SP )
F0 ← {fi}, B0 ← S −F0

IF ← getForegroundInfo(F0, SP )
IB ← getBackgroundInfo(B0, SP )
repeat

l ← getGraphCutLabeling(SP , IF , IB)
Ft+1 ← {s|ls = 1}, Bt+1 ← {s|ls = 0}
IF ← getForegroundInfo(Ft+1, SP )
IB ← getBackgroundInfo(Bt+1, SP )
t← t + 1

until Ft−1 = Ft

end for

labeled by nine participants. The images are diverse and
objects are generally on very cluttered backgrounds. Our
KTH Object and Disparity (KOD) Database [18] presented
in [11] contains images and disparity maps of 25 objects with
different light conditions, backgrounds, and object poses. De-
tailed ground-truth segmentations of the objects are included.

Object detection: In [11], we presented different experi-
ments to investigate the object-detection performance of our
symmetry model. To give a overview of the performance
of the complete ADAS system, we present here one of
the experiments. In Fig. 6, the proportion that any of the
selected fixations is on the object is plotted as a function of
the number of fixations. It shows that the object-detection
performance of the symmetry model is higher than that of
the contrast model. The difference in Fig. 6(a) is highly
significant. In Fig. 6(b), the performance for the symmetry
model is also higher, but the difference is not significant and
the performance is high for both. This can be explained by
the less complex backgrounds in this database. The results
suggest that symmetry is particularly advantageous for object
detection in cluttered scenes. The performance increases
when more fixations are chosen, but is already high for the
first, most salient, fixation. The implementation of the model
on a GPU (Nvidia GTX 480) runs in 5-10 ms.

Segmentation: We test the performance of our object-
segmentation method on the KOD Database. The quality
of the segmentations is measured with the F1 score by
comparing it to the ground-truth segmentation. The per-
formance of our ADAS method is compared to the active
segmentation method [1] using the same symmetry fixation
points as initialization. Furthermore, both models are tested
using fixation points selected by the contrast-saliency model.

Fig. 7 shows the F1 score of the best segmentation
resulting from any of the fixations as a function of the
number of fixations. The performance of our ADAS method
is significantly higher for the first two symmetry fixations.
The improvement of our method when contrast fixations
are used is large. This can be explained by the fact that
the contrast-saliency model often selects fixations close to
the border of the object. Mishra et al.’s method is more



Fig. 9. Some segmentation examples. Fixation points are select using symmetry. The first row shows the segmentations resulting from our ADAS method.
The second row shows the results of Mishra et al.’s segmentation method [1].

sensitive to fixation points close to the border than the
proposed method. The figure furthermore shows that the
use of the symmetry-saliency method for object detection
outperforms the contrast-saliency method. See Fig. 9 for
some segmentation examples of both methods.

The improvement in computation time of our ADAS
model is enormous. Our object-segmentation method runs
between 50-100 ms, whereas Mishra et al.’s method runs
in the order of a couple of minutes. This is mainly due to
the use of a complex edge-detection method, but also the
recalibration of edge strengths using disparity information
and the graph cuts on a regular pixel representation of the
image slows down the process.

Fig. 8 shows the performance of the proposed method us-
ing different types of information. The use of color, disparity,
and plane information clearly outperforms the method using
color and disparity or color only. The performance when
using color and disparity is lower than when color is used
only. This can be explained by the fact that using disparity
adds many super pixels on the table plane to the foreground.
However, disparity also includes the heterogeneously colored
parts of the objects. Adding the plane information to the
model gets rid of the points on the table plane, while
preserving all correctly labeled super pixels on the object.

IV. DISCUSSION AND CONCLUSION
We presented our Automatic Detection And Segmentation

(ADAS) method. It is a fast and autonomous method to detect
and segment objects previously unknown to the robot. The
method consists of two parts. In the object-detection part, a
salient object is detected using local symmetry in the image.
Based on the selected fixation point, the object-segmentation
part iteratively segments the object from its background using
color, disparity, and plane information.

The results show that the our symmetry-saliency method
outperforms the contrast-saliency method [8] in detecting
salient objects. The object-segmentation method outperforms
the active segmentation method [1] on the quality of the
segmentation, and above all in computation time. The later
method processes an image in a couple of minutes, wheras
our ADAS method runs real-time, which is important for
robotics. Using symmetry to select the fixation points fur-
thermore results in better segmentation than using contrast.

The use of super pixels results in a great speed up, but
comes with the disadvantage of early commitment. If super

pixels cross object boundaries, it is impossible to recover. To
minimize this problem, we chose conservative parameters.
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