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Abstract

We present a database and a software tool, VisGraB, for bench-
marking of methods for vision-based grasping of unknown ob-
jects with no prior object knowledge. The benchmark is a com-
bined real-world and simulated experimental setup. Stereo im-
ages of real scenes containing several objects in different con-
figurations are included in the database. The user needs to pro-
vide a method for grasp generation based on the real visual
input. The grasps are then planned, executed, and evaluated by
the provided grasp simulator where several grasp-quality mea-
sures are used for evaluation. This setup has the advantage that
a large number of grasps can be executed and evaluated while
dealing with dynamics and the noise and uncertainty present
in the real world images. VisGraB enables a fair comparison
among different grasping methods. The user furthermore does
not need to deal with robot hardware, focusing on the vision
methods instead. As a baseline, benchmark results of our grasp
strategy are included.

1 Introduction

Grasping previously unseen objects based on visual input is a
challenging problem. Various methods have been proposed for
solving the problem, as will be discussed later, but it is difficult
to compare them and evaluate their strengths and weaknesses.
This is due to the fact that methods are often tested on differ-
ent data and with different hardware setups in different labs,
which makes it difficult, if not impossible, to repeat the exper-
iments under the same conditions. It is furthermore difficult to
quantify results thoroughly, because of the time consuming na-
ture of the experiments. For these reasons, we propose a mixed
real-world and simulated benchmark framework.

A database of stereo images is provided and the generated
grasps are evaluated using a simulated environment, [15, 8],
see Figure 1. This setup allows for extensive experimental
evaluation, supporting comparison of different methods, while
considering noise and uncertainty in the real stereo images.
Our previous work used a part of the database as a proof of
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concept, [27]. In this paper, we present a large database along
with software tools to evaluate the generated grasps.

The proposed benchmark focuses on grasping unknown ob-
jects in realistic, everyday environments without prior knowl-
edge. The grasp-generation methods have to deal with the fact
that the visual observation provides only partial and noisy in-
formation of the scene and that no prior object models are
available. This poses a challenging but important problem
that needs to be solved if to advance in autonomous robotics.
The problem is currently actively studied in the robotics com-
munity and different methods have been proposed. For in-
stance, to deal with the noisy and incomplete data coming
from robotic sensors and to provide a reduced set of poten-
tial grasps, shape approximations using shape primitives have
been used in [14, 11]. A less restricted strategy for grasping
unknown objects in the real world based on a hierarchical edge
representation of the scene has been presented in [28]. In [27],
this method has been extended to include surface information.
Other approached apply learning methods to gain grasp experi-
ence and apply this in grasping unknown objects, for instance,
based on the parameters of a superquadric representation of the
object [26, 7], shape context [3], or features of edge elements
[2]. Training can be performed on simple geometrical shapes
[6], synthesized objects [31], or using human expertise [7]. In
[12], a publicly-available database with a large number of per-
formed grasps has been created, which can be used to train
machine learning algorithms for grasping novel objects.

The presented database contains original stereo images,
where no object hypotheses are generated beforehand. This
means that the grasp-generation methods provided by the users
of the benchmark need to be able not only to deal with the
grasp-generation process but also with generating object hy-
potheses, if the grasp generation method requires that. Meth-
ods such as [31, 27, 28], works directly on images without
the need to explicitly generate object hypotheses. There are
also several methods that perform figure-ground segmentation
at first, such as using a bottom-up segmentation method based
on color and depth [30] and the additional use of a table plane
detection [3]. Other methods do not need a segmentation of the
scene, because they use single image points for pinch grasps,
e.g., [31].

Although the studies discussed all deal with grasping un-
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Figure 1: The benchmark pipeline. The real stereo images (a) are input to the user’s grasp-generation method (b). Our method is
given as a baseline example. The grasp-generation method proposes a grasp hypothesis, either as (c-i) a set of desired contacts
, C = {C1, C2, C3} (implicitly coding the approach side), (c-ii) by choosing one of the hand pre-grasps and the desired hand
pose, or (c-iii) by directly setting the joint angles and hand poser. Based on the grasp hypothesis, the hand pose, Xhand, and
configuration, q = {q0, . . . , q6}, are determined by the provided software (d), and the grasp is executed by the dynamic simulator
(e). Note that b) shows the object representation specific to our baseline method (see Section 4).

known objects, each used a unique experimental setup; differ-
ent objects and scenes were used, as well as different robotic
platforms. Some of the studies have been done entirely in sim-
ulation (e.g., [7, 6, 26, 12]), whereas others are performed in
the real world (e.g., [28, 31, 2]). Moreover, the studies use dif-
ferent measures to evaluate the grasp performance; [12, 14, 26]
used a measure based on the grasp wrench space [10], the time
to generate the first good grasp is used in [6], and other stud-
ies grasp and lift the object in order to determine grasp success
[27, 30, 31], or a more fine-grained grasp classification [2, 28].
We use all these quality measures in our benchmark.

In this paper, we propose VisGraB as a standardized bench-
mark for grasping unknown objects based on real-world visual
data. We test the performance of the grasp-generation method
by executing the grasps in a dynamic simulator, lifting the ob-
ject, and evaluating the result using different quality measures:
success rate, fine-grained grasp classification, time to success-
ful grasp, and a measure based on the grasp wrench space. By
enabling the comparison between different grasping methods,
we aim to provide a better insight into the different methodolo-
gies and their outcomes.

We see the use of a grasp simulator as a good solution to ob-
tain a standardized comparison between methods. Although a
grasp simulation on an individual grasp level will not be com-
pletely identical to reality due to the inherent complex nature
of the physical processes, methods are likely to be ranked cor-
rectly on a more general level. This is supported by our recent
work [21], where we tested the same methods using VisGraB
and two real robotic setups. Methods that tested successful in
simulation performed well in reality and reversely, poor per-
forming methods in simulation performed poorly in reality as
well. We therefore believe that the simulation is a valid tool
to evaluate grasping methods. Furthermore, in [8], thousands
of grasps with a parallel griper have been compared between
our simulator and a real system. Simulator and reality agreed
on the clearly stable and clearly unstable grasps. Differences
were found for just-stable and just-unstable grasps. However,

we do not see this as a problem, since we aim to aid the devel-
opment of robustly stable grasping method.

In other fields, benchmarking is quite common, for instance,
for object categorization and image segmentation [13, 9], for
stereo-correspondence algorithms [32], and for validation of
3D-reconstruction methods [33]. The wish for a standardized
test for grasping has also been put forward in [34], where a
benchmark is presented for the evaluation of grasp planners.
However, different from our aims, the benchmark in [34] fo-
cuses on grasping known objects based on full and detailed
geometrical information about the objects. We, on the other
hand, propose a benchmark for grasping unknown objects in
complex scenes based on real, incomplete, and noisy visual
observations.

In summary, the main contribution of this paper is a stan-
dardized benchmark for vision-based grasping of unknown ob-
jects, so that different grasp generation methods can be system-
atically tested and compared. VisGraB includes: 1) A database
with real stereo images and simulated models of a large num-
ber of scenes containing objects to be grasped, 2) software for
the easy access of the database and use of the simulator, 3) the
execution of the grasp hypotheses in a dynamic simulation, 4)
an evaluation of the grasps based on static and dynamic quality
measures, and 5) tools to display the results. Using this bench-
mark allows users to focus on the vision aspects of grasping,
without having to deal with the robotic hardware.

The paper is organized as follows: We first describe the
benchmark with the database, the dynamic simulator, and the
grasp quality measures in Section 2. In Section 3, a descrip-
tion of how to use the benchmark is given. Next, in Section 4,
we give a baseline performance for the benchmark using our
method described in [27]. The paper ends with a discussion in
Section 5.

2 The Benchmark
The benchmark consists of a database containing real visual
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Figure 2: The 18 objects used in the benchmark.

input, a grasp simulator including a dynamics engine to eval-
uate the grasps, and several software tools for easy access to
the database and use of the simulator, as well as evaluation and
presentation of the results. The benchmark contains a total of
432 scenes with a variety of different objects and with different
backgrounds. The database includes real stereo images of all
the scenes, as well as the 3D models of the scenes, which will
be used by the simulator to evaluate the grasps.

The general pipeline of the benchmark is illustrated in Fig-
ure 1. Based on the stereo images (Fig. 1a), the user’s method
generates grasping hypotheses (Fig. 1b). The hypotheses can
be provided in different formats (Fig. 1c). Given a grasping hy-
pothesis, the software provided with the benchmark determines
the pose of the hand and the joint configuration (Fig. 1d). The
grasp is then executed by the simulator and the quality of the
grasp is displayed to the user (Fig. 1e). Details on the database
are given in Section 2.1. Section 2.2 describes the grasp sim-
ulator, and the possible grasp representation are given in Sec-
tion 2.3. Finally, Section 2.4 describes the evaluation of the
grasps.

The benchmark, including stereo images, the modeled 3D
scenes, and the simulation software can be found on the Vis-
GraB website [20].

2.1 The Database
The 18 objects used in the database are displayed in Figure 2.
The objects are part of the KIT ObjectModels Web Database1.
3D models of all objects are available for the grasp simulation.
The objects have various shapes, sizes, colors, and textures.
We recorded scenes with one object and with two objects. In
the single-object case, we recorded the 18 different objects in
eight different poses, four where the object stands upright, and
four where the object lies down. In the double-object scenes,
we have 9 combinations of objects, where the objects are in
eight different configurations, four where the objects are placed
apart, and four where the objects touch each other. All scenes
are recorded in two conditions, placed on a non-textured and
on a cluttered/textured table. This gives in total 2 × (18 ×
8 + 9 × 8) = 432 scenes. Some example scenes are given in

1http://wwwiaim.ira.uka.de/ObjectModels

Figure 3, top row.
The scenes are modeled in 3D, in order to test the user-

generated grasps in simulation. The models are obtained by
calculating the 3D point cloud of the scene using the dense
stereo algorithm provided in OpenCV, and subsequently reg-
istering the 3D object models to the point cloud using rigid
point-set registration [25]. Where necessary, the registration
was corrected by hand. A few scene models are shown in Fig-
ure 3, bottom row.

The object models, taken from the KIT ObjectModels Web
Database, have been scanned using a laser-range finder and are
of high quality, with sub-millimeter errors. Errors in the posi-
tioning of the objects and the table in the scene are in the order
of a few millimeters.

With the database, the vision-based grasping methods are
tested for the ability to generate grasps on objects with a variety
of different shapes, sizes, colors and textures. Furthermore, the
robustness to the pose of the object, the complexity of the scene
and the clutter in the scene is tested.

2.2 The Grasping Simulator

The grasps are performed in simulation using RobWork2, see
Figure 1. RobWork is a framework for simulation and con-
trol of robot systems [15, 16, 24], with a special emphasis on
object grasping and manipulation [18, 17, 5]. The grasp simu-
lator has been evaluated and compared to real systems in [4, 8]
and has been used, for instance, in [19, 1, 27]. For the dy-
namics simulation and constraint solving, RobWork relies on
Open Dynamic Engine (ODE), one of the most used physics
engines for robotics. In addition, RobWork performs its own,
more accurate, contact calculation for improved grasp simu-
lation. We provide the RobWork grasp simulator as a part of
the VisGraB benchmark and created an easy-to-use interface,
which allows the user to work with VisGraB without having to
learn the details of the simulator. Our benchmark methodology
is based on open xml formats and can hence be used with other
grasp simulators, such as GraspIt [23] and OpenGRASP [22].
However, as motivated above, RobWork provides a good grasp
simulation that has the additional benefit that it is developed by
us, allowing good integration in VisGraB and swift application
of updates and improvements. RobWork is distributed under
the Apache 2.0 license and is supported on both Windows and
Linux-based operating systems.

Using the RobWork grasp simulator including a dynamics
engine allows us to not only look at static quality measures of
the grasp, but also to determine the actual grasp success by ob-
serving the dynamical and physical consequences of the grasp.
In our definition, a stable grasp is a grasp with which the ob-
ject can be lifted without slipping from the hand. We therefore
propose a method where the object is lifted after it has been
grasped. We hence define the lift-quality measure as an im-
portant measure for the stability of a grasp, but also provide a
static quality measure based on the grasp wrench space. The
quality measures are explained in Section 2.4.1.

2http://www.robwork.dk
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Figure 3: Examples of scenes included in the database. The top row gives the rectified left camera images and the bottom row
gives a view on the modeled scenes used for grasp simulation. Examples of the different conditions are given.

We use the three-finger Schunk Dexterous Hand (SDH) (see
Figure 4), which can be used for both two-finger parallel and
three-finger grasping. The SDH has seven degrees of freedom,
allowing for complex and flexible grasping. We denote the
joint configuration as q = {q0, . . . , q6}. Although we made
the decision to use the SDH, RobWork supports the easy use
of other grippers.

The objects in the scene are modeled as rigid bodies, and
are not deformable. They all are assumed to have the same
friction properties. The simulation uses a Coloumb friction
approximation, with the following friction coefficients: µ =
0.6 for object-finger contact, µ = 0.8 for finger-finger contact,
and µ = 0.4 for object-table contact.

A grasp is performed by first placing the hand in a suitable
grasp configuration generated by the user’s vision algorithm
and using the utility functions provided by the benchmark, see
Section 2.3.2 and 2.3.1. The simulation is then started and a
grasp-control policy guides the fingers from the start configu-
ration qopen towards the closed configuration qclosed. When
the fingers achieve a static configuration, it is either because of
contact forces or because qclosed is reached. Next, the system
attempts to lift the grasped object. After lifting, the quality of
the grasp is determined as explained in Section 2.4.1.

The grasp control policy is fairly simple, but can directly
be used on the interface of the real hardware of the SDH as
well. The policy does not rely on specific sensor feedback
other than the joint angles. It requires two joint configurations
of the hand qopen and qclosed, as well as the maximum allowed
joint torques τmax. The user moreover needs to provide Xhand,
which is the 6-dimensional Cartesian pose of the hand base
(position and orientation in 3D). The control policy will close
the fingers from qopen toward qclosed using a PD controller on
each joint. The torque used by the PD controller will be lim-
ited by τmax which allows for a rough balancing of the contact
forces. As such the simulation only need a few parameters to
execute a grasp:

(Xhand,qopen,qclosed, τmax) (1)

These parameters make out the grasp configuration and
should be the output of the grasping strategy that is being
benchmarked. However, many vision-based grasp strategies
do not include grasp control specifics such as inverse kinemat-
ics or explicit modeling of joint force limits. To accommodate
the need for varying levels of grasp control, the benchmark
provides two utility functions that ease the generation of grasp
configurations, which are outlined in the next section.

2.3 Grasp Utility Functions

To simplify the generation of grasps, we provide three grasp
utility functions as part of the benchmark: based on grasp con-
tacts (Fig. 1c-i), based on hand pre-shapes (Fig. 1c-ii), and
based on the the joint configuration (Fig. 1c-iii).

2.3.1 Grasp contacts

The grasp parameters can also be generated by providing two
or three desired grasp contacts. See Figure 1c-i for an example
of three contacts. A contact Ci = {cpos, cdir} indicates the po-
sition, cpos = {cx, cy, cz}, where the tip of the finger should be
placed and the contact direction, cdir = {cd1, cd2, cd3}, which
determines in which direction the contact force should work.
The inverse kinematics are solved by the utility function pro-
vided in the benchmark:

C 7→ (Xhand,qopen,qclosed, τmax) (2)

where C = {C1,C2} for two-finger grasps and C =
{C1,C2,C3} for three-finger grasps.

The inverse kinematics algorithm does not require the grasp
contacts to be in a specific order or even to be part of the inverse
kinematics solution. In the latter case, the algorithm generates
inverse-kinematics solutions that are close to the desired con-
figuration. However, configurations with too high deviation
from the target configuration are reported as failed grasps.
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Figure 4: The hand pre-shapes. The top row depicts the qopen

configurations and the bottom row the qclosed configurations.
From the left to the right: 2-finger parallel grasp, 3-finger ball
grasp and 3-finger cylinder grasp.

2.3.2 Hand pre-shape

It is common to use hand pre-shapes in grasp planning, where
the pre-shapes are either generated using simple heuristics or
by expert users. For the SDH we have chosen three general
hand pre-shapes, see Figure 4. The figure shows the opening
and closing positions. The 2-finger parallel grip is shown in
left left column, the 3-finger ball grip in the middle column,
and the 3-finger cylinder grip in the last column. Given the
desired pose of the hand base, Xhand and the identifier for the
specific hand pre-shape, k, the utility function calculates the
grasp parameters:

(Xhand, k) 7→ (Xhand,qopen,qclosed, τmax) (3)

The complete description of the pre-shape configurations in-
cluding τmax is available on the VisGraB website [20].

2.3.3 Joint configuration

The user can also use his or her own inverse-kinematic solver
to acquire the hand pose, Xhand, and joint configuration when
the fingers are in contact with the object, q. The simulation
parameters are then obtained with the utility function:

(Xhand,q) 7→ (Xhand,qopen,qclosed, τmax) (4)

2.4 Experimental Evaluation
To test the quality of the user’s grasp-generation method, we
apply the following experimental procedure: The user provides
a list of grasp configuration for every scene in the database. All
grasps are then performed by the simulator and the results are
returned.

In a single experimental trial, the quality of the generated
grasp is tested as follows: the hand is placed in the correct pose,
Xhand. It then closes from the opening configuration, qopen, to
the closing configuration, qclosed. The object is grasped when
the hand settles in a stable configuration and the fingers touch
the object. However, this does not necessary mean that the
grasp is stable. To test the stability of the grasp, the hand at-
tempts to lift the object. We discriminate the following results:

s EGA2 1 s EGA2 3 s EGA3 1

Figure 5: Illustration of the surface-based Elementary Grasp-
ing Actions used by the benchmark method [27]. The grasps
are targeted at the red surface. s2EGA1 is an two-finger en-
compassing grasp, s2EGA3 is a two-finger side pinch grasp,
and s3EGA1 is a three-finger encompassing grasp.

Stable grasp: The object was grasped and held after lifting,
with little or no slippage of the object in the hand.

Object slipped: The object was grasped and held after lifting,
but there was considerable slippage of the object in the
hand.

Object dropped: The object was grasped, but after lifting, the
object was no longer held by the hand.

Object missed: The object was not grasped by the hand.

In collision: The initial hand configuration produced a situa-
tion where the hand was penetrating the object(s) and/or
the table.

Invalid grasp contacts: The inverse-kinematics solver could
not find a joint configuration to reach the desired grasp
contacts.

Simulation failure: The simulation failed due to physics-
engine failure.

We consider the grasp to be successful when the result is
either object slipped or stable grasp. In both cases, the object
is in the hand after lifting. The two situations are discriminated
based on the amount that the object slipped in the hand during
lifting. The slippage defines the lift-quality measure, In case
of the double-object scenes, the results are given for the object
that is closest to the hand.

2.4.1 Grasp quality measures

In case the object is lifted successfully, we calculate the grasp
quality using two quality measures: the lift quality, Qlift, and
the grasp wrench-space quality, Qgws.

The lift quality is a dynamic quality measure that represents
the ability of a grasp to hold the object stable during lifting, that
is, with the object slipping from the hand as little as possible.
The lift quality is a value between 0.0 and 1.0 and it is inversely
proportional to how much the object moves with respect to the
hand during lifting:

Qlift = 1− ||h− o||
||h||

(5)
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where h is the 3D displacement of the hand during lifting and
o is the 3D displacement of the object during lifting.

The grasp wrench-space measure Qgws is a static qual-
ity measure based upon the grasp wrench space (GWS),
which reflects the minimum perturbating wrench that the grasp
can counterbalance, given the forces of the fingers and the
Coulomb friction coefficients [23, 10]. The GWS is deter-
mined by the friction cones of all n contact points. For a given
contact i, the direction of the friction cone is determined by
the contact force fi, and the width of the cone is based on the
Coulomb friction coefficient, µ. To calculate the GWS, the
cone is approximated by a set of m force vectors, fi,j , which
are equally spread around the surface of the cone. For each
force vector, a six-dimensional contact boundary wrench is de-
fined as:

wi,j =

(
fi,j

1
r · di × fi,j

)
(6)

where di is the vector from the torque origin to the ith point
of contact and r is the maximum radius of the object from the
torque origin. The cross product di × fi,j is the torque τi,j .
The GWS is then computed as the convex hull over the union
of each set of contact boundary wrenches:

W = ConvexHull

(
n⋃

i=1

(wi,1, . . . ,wi,m)

)
(7)

Finally, the grasp quality measure Qgws is determined by the
distance from the origin to the nearest facet of the convex hull,
which reflects the maximum perturbating wrench that the grasp
can counterbalance.

2.4.2 Analyses and presentation of results

Since different grasping methods may have their own
strengths and weaknesses, we do not summarize the results in
a single value. Instead, we analyse the data in different ways.
First, we give the distribution of grasping results for the differ-
ent conditions, see Figure 6. Second, we give the average grasp
quality measures Qlift and Qgws over the successful grasps,
i.e., stable grasps and object slipped, see Table 1.

These two analyses give the average performance, which in-
dicates how well the method is expected to perform if one grasp
of the suggested hypotheses is selected. However, grasp per-
formance can be greatly improved if the system is allowed to
attempt multiple grasps. To investigate this, we plot the grasp
success rate as a function of the number of grasp attempts as
a third analysis, see Figure 7. Here, per scene, grasps are se-
lected at random from the list of hypotheses and the averages
over the different scenes and 20 randomized trials are given.
In the forth analysis, we investigate how many attempts are
needed to achieve a successful grasp, see Table 2. This table
gives the proportion of scenes where the method provides a
successful grasp, and, if this is the case, how many grasp at-
tempts are on average needed to grasp the object successfully.

Finally, to get more insight in the performance of the method
for the different objects, we give the percentage of successful

grasps for each object in the different conditions, see Tables 3
and 4.

Scripts are provided as part of the benchmark to process the
results and to present the results.

3 Using the Benchmark
VisGraB is easy to use. The user does not need to learn to work
with the grasp simulator, as this is all taken care of by the pro-
vided software. Tools are available to access the database, ex-
ecute the grasps, evaluate the outcome and display the results.
The only thing the user needs to add is his or her vision-based
grasp-generation method, which takes the images as input and
that suggests a list grasp hypotheses as output.

The benchmark can be downloaded from the VisGraB web-
site [20]. Using the benchmark works in a number of steps:

1. Loading the stereo images and the stereo-calibration file.

2. Generating grasps based on the visual information and
providing the grasp configurations, potentially by using
the utility functions for hand pre-shapes or grasp contacts.

3. Running the simulation, providing a list of grasp configu-
rations for every scene.

4. Running the scripts to process and represent the results.

The final benchmark results can then be published on the Vis-
GraB website for comparison. The detailed information about
the formats and the use of the software can be found on the
website.

4 Baseline Method
To set a baseline for comparison and to illustrate the analyses,
we used our grasp-generation method presented in [27] and
applied it to the VisGraB benchmark. The grasping method is
based on an Early Cognitive Vision system [29] that builds a
sparse hierarchical representation based on edge and texture in-
formation. This representation is used to generate edge-based
and surface-based grasps. The method detects surfaces of the
objects in the scene, and generates grasps based on these sur-
faces. For the baseline, we use the surface-based grasps only.
The grasp method finds contact points at the boundary of a
surface, on which so-called Elementary Grasp Actions are ap-
plied, see Figure 5. Based on two grasp contacts, a two-finger
encompassing grasp, s2EGA1, is generated, as well as two
two-finger pinch grasps, s2EGA3 one for each contact. Based
on three grasp contacts, a three-finger encompassing grasp,
s3EGA1, is generated. For details about the method, we re-
fer to [27].

4.1 Results
The grasp results of the baseline method are shown in Figure 6
and the grasp quality of the successful grasps are in Table 1.
The results indicate that the three-finger encompassing-grasps
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Figure 6: Grasp results. The stacked-bar plots show the aver-
age distribution of all grasps over all scenes. The stable and
slipped grasps are considered successful grasps, where the ob-
ject is held in the hand after lifting. The gray area shows the
proportion of scenes where the methods do not suggest any
grasps.

are most successful, followed by the two-finger encompassing-
grasps. Due to missing visual information about the back of the
objects, the two-finger pinch grasps results more often in colli-
sions or no grasp is suggested. Figure 7 shows a similar general
picture, and indicates that all methods benefit from successive
grasp attempts. For the two and three-finger encompassing
grasps, the performance gets to high levels already for a few
extra attempts. Table 2 indicates that the two-finger encom-
passing grasp finds a stable grasp faster than its three-finger
counterpart, although it fails to suggest a successful grasp on
a larger number of scenes. In general, the methods are more
successful in grasping one object from the double-object scene
then grasping the object in the single-object scene. However
in the double-object scenes there are more collisions. The re-
sults for the scenes with textured and non-textured background
are very similar, which shows that out method can deal with a
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Figure 7: The grasp success rate as a function of the number of
attempted grasps.

higher degree of visual complexity. The grasp success for the
individual objects are given in Tables 3 and 4.

5 Discussion
We presented VisGraB, a database and a software tool for
benchmarking vision-based grasping of unknown objects. The
database contains real stereo images, which can be used by
the user to generate grasp hypotheses. These hypotheses can
then be passed on to the software tool, which contains a dy-
namic grasps simulator that plans, executes, and tests the grasp.
The database contains a large set of scenes, with different ob-
jects displaying a variety of different shapes, sizes, colors and
textures, and with different backgrounds. By performing the
grasps in simulation, a large number of grasps can be repeat-
edly tested. The benchmark facilitates 1) the evaluation and
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Table 1: The lift quality and grasp wrench-space quality for the
textured scenes. The values are the averages over the success-
ful trials (stable, slipped).

Textured background
s2EGA1 s2EGA3 s3EGA1

Ql QGWS Ql QGWS Ql QGWS

Si
ng

le standing 0.58 0.46 0.44 0.30 0.72 0.59
laying 0.31 0.31 0.04 0.03 0.55 0.50

all 0.44 0.39 0.24 0.17 0.64 0.55

D
ou

bl
e apart 0.60 0.47 0.46 0.35 0.76 0.63

close 0.68 0.46 0.45 0.35 0.74 0.60
all 0.64 0.47 0.45 0.35 0.75 0.62

Non-textured background
s2EGA1 s2EGA3 s3EGA1

Ql QGWS Ql QGWS Ql QGWS

Si
ng

le standing 0.60 0.46 0.51 0.37 0.79 0.65
laying 0.36 0.31 0.01 0.03 0.55 0.51

all 0.48 0.39 0.26 0.20 0.67 0.58

D
ou

bl
e apart 0.62 0.50 0.46 0.40 0.68 0.55

close 0.51 0.41 0.36 0.35 0.68 0.52
all 0.56 0.46 0.41 0.38 0.68 0.53

Table 2: The proportion of scenes with a successful (stable or
slipped) grasp (p) and the average number of grasp attempts
until a successful grasp (ga)

Textured background
s2EGA1 s2EGA3 s3EGA1

p ga p ga p ga

Si
ng

le standing 0.81 1.77 0.61 3.35 0.88 2.18
laying 0.65 2.07 0.06 2.38 0.81 3.05

all 0.73 1.91 0.33 3.27 0.84 2.60

D
ou

bl
e apart 0.78 1.72 0.69 4.12 0.92 1.64

close 0.86 1.59 0.64 3.79 0.89 2.35
all 0.82 1.65 0.67 3.96 0.90 1.99

Non-Textured background
s2EGA1 s2EGA3 s3EGA1

p ga p ga p ga

Si
ng

le standing 0.89 1.80 0.72 4.13 0.94 1.53
laying 0.65 2.17 0.04 1.78 0.81 5.04

all 0.77 1.96 0.38 4.00 0.88 3.15

D
ou

bl
e apart 0.81 1.68 0.69 4.75 0.81 1.58

close 0.72 1.75 0.58 4.94 0.78 1.62
all 0.76 1.71 0.64 4.84 0.79 1.60

comparison of different vision-based grasp-generation meth-
ods in a standardized fashion, and 2) a focus on the vision
methods instead of on the robotic hardware. We presented an
example as an illustration of the use of the benchmark.

In addition to what we presented here, the VisGraB frame-
work can be used for evaluating a variety of tasks related to
grasping, for example grasping known objects can be tested
using the KIT object models, and learning methods can be
evaluated on their generalization abilities. Although in Vis-
GraB, we focus on the generation of grasp hypotheses from
a pair of stereo images and outsource the grasp execution to

the grasp simulator, RobWork can simulate visual and tactile
observations, allowing implementations of closed-loop grasp
execution.

We strongly encourage the use of the benchmark to test your
vision based grasp-generation methods and to compare it to
other methods. We are very open to extend the benchmark
based on future needs from the community.
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Textured background

Single-object scenes
s2EGA1 s2EGA3 s3EGA1

s l s l s l
1 50 % 10 % 12 % 8 % 76 % 31 %
2 28 % 74 % 4 % 0 % 77 % 86 %
3 17 % 32 % 21 % 6 % 9 % 19 %
4 48 % 15 % 38 % 0 % 37 % 21 %
5 57 % 38 % 50 % 0 % 33 % 12 %
6 45 % 44 % 9 % 0 % 67 % 12 %
7 23 % 76 % 43 % 0 % 35 % 64 %
8 33 % 44 % 0 % 0 % 31 % 13 %
9 23 % 9 % 16 % 0 % 38 % 55 %
10 87 % 29 % 31 % 4 % 97 % 61 %
11 60 % 47 % 20 % 0 % 59 % 73 %
12 54 % 60 % 5 % 0 % 76 % 47 %
13 54 % 38 % 22 % 0 % 59 % 58 %
14 74 % 4 % 46 % 0 % 86 % 35 %
15 14 % 19 % 12 % 0 % 63 % 41 %
16 90 % 50 % 64 % 0 % 82 % 65 %
17 33 % 25 % 0 % 0 % 13 % 0 %
18 13 % 0 % 0 % 8 % 53 % 0 %

Double-object scenes
s2EGA1 s2EGA3 s3EGA1

f c f c f c
a 58 % 87 % 0 % 0 % 84 % 85 %
b 21 % 48 % 0 % 0 % 40 % 55 %
c 0 % 32 % 36 % 33 % 45 % 31 %
d 37 % 48 % 24 % 23 % 42 % 24 %
e 52 % 66 % 43 % 30 % 76 % 61 %
f 44 % 54 % 20 % 25 % 43 % 39 %
g 31 % 33 % 15 % 27 % 68 % 36 %
h 53 % 76 % 8 % 9 % 76 % 55 %
i 58 % 50 % 10 % 8 % 67 % 31 %

Table 3: Percentage of successful grasps for the different ob-
jects in the textured scenes. Results for the single-object scenes
are split into standing (s) and laying (l) object poses and for the
double-object scenes into far (f) and close (c). The pairs in the
double-object scenes are: a: 1-18, b: 2-11, c: 3-7, d: 4-15, e:
5-14, f: 6-8, g: 9-13, h: 10-12, i: 16-17.

Non-textured background

Single-object scenes
s2EGA1 s2EGA3 s3EGA1

s l s l s l
1 72 % 25 % 7 % 0 % 93 % 30 %
2 37 % 69 % 4 % 0 % 85 % 88 %
3 34 % 51 % 23 % 0 % 49 % 10 %
4 69 % 5 % 28 % 0 % 53 % 12 %
5 52 % 21 % 31 % 0 % 48 % 13 %
6 43 % 19 % 8 % 0 % 66 % 6 %
7 41 % 63 % 23 % 0 % 46 % 61 %
8 25 % 50 % 13 % 0 % 21 % 0 %
9 48 % 33 % 10 % 0 % 85 % 61 %
10 86 % 19 % 17 % 0 % 99 % 72 %
11 70 % 46 % 20 % 0 % 89 % 74 %
12 33 % 54 % 6 % 0 % 74 % 47 %
13 70 % 29 % 21 % 15 % 91 % 56 %
14 73 % 13 % 24 % 0 % 87 % 39 %
15 45 % 14 % 10 % 0 % 86 % 19 %
16 78 % 44 % 66 % 0 % 91 % 53 %
17 19 % 0 % 16 % 18 % 19 % 0 %
18 13 % 10 % 50 % 0 % 57 % 20 %

Double-object scenes
s2EGA1 s2EGA3 s3EGA1

f c f c f c
a 71 % 79 % 3 % 3 % 93 % 82 %
b 42 % 24 % 2 % 0 % 44 % 53 %
c 29 % 4 % 17 % 4 % 16 % 28 %
d 38 % 45 % 18 % 18 % 38 % 54 %
e 66 % 63 % 27 % 21 % 83 % 48 %
f 77 % 55 % 18 % 22 % 38 % 51 %
g 25 % 44 % 12 % 17 % 64 % 80 %
h 57 % 20 % 7 % 3 % 63 % 19 %
i 35 % 26 % 19 % 19 % 74 % 27 %

Table 4: Percentage of successful grasps for the different ob-
jects in the non-textured scenes. Results for the single-object
scenes are split into standing (s) and laying (l) object poses
and for the double-object scenes into far (f) and close (c). The
pairs in the double-object scenes are: a: 1-18, b: 2-11, c: 3-7,
d: 4-15, e: 5-14, f: 6-8, g: 9-13, h: 10-12, i: 16-17.
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