110100100100100010111000**01011**0

Interest Points

Gert Kootstra

/ETENSKAP

Credits of some of the slides: Bahadir K. Gunturk and Fei-Fei Li

Overview

- Local Features for Image Representations
- Interest-Point Detection
 - Harris corners
 - Difference-of-Gaussians (SIFT)
- Interest-Point Description
 - Histogram-of-Gradients (SIFT)
- Bag of Words

Image Representation: Global

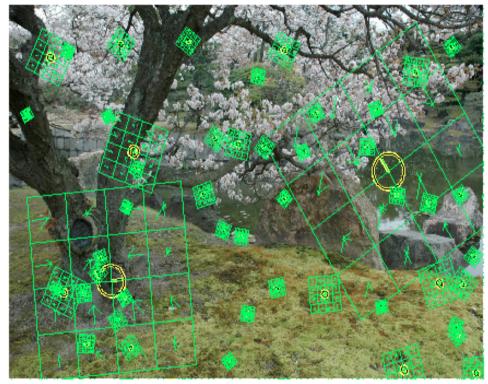
- Global feature representation
 - Color histograms, Principle Component Analysis,...

- Disadvantages
 - Cannot deal with occlusions, clutter, viewpoint changes.

Image Representation: Local

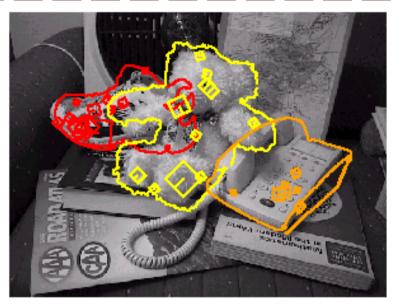
Representation by a set of local features

- Image points that differ from their surrounding
 - Well-localized points
- The neighborhoods represent the image
 - Individually identifiable



Advantages of Local Features

- Can deal with occlusions
- Can deal with clutter
- More invariant to image transformations
- More robust to noise



- Object recognition without segmentation
- Sparse representation of the image

A Good Local Feature

- Accurate and repeatable localization of the feature points
- Invariance to translation, rotation, scale, viewpoint
- Robustness to noise, lighting conditions, compression, blur.
- Distinctiveness of descriptor
- Efficiency

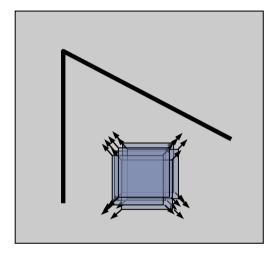
Interest points

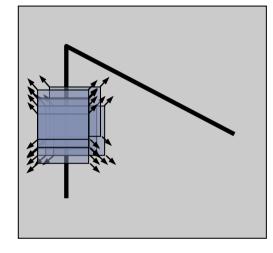
- We focus on interest points as local features
- Interest-point detector
 - Points on corners
 - Harris corners (first-order derivative)
 - Points on blob-like structures
 - SIFT (second-order derivative)
- Interest-point descriptor
 - Local description of the neighborhood
 - Histogram of Oriented Gradients

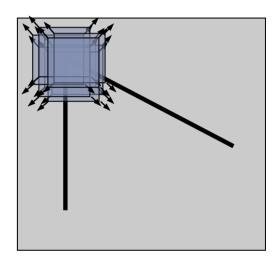
Harris-Corner Detector

Intuition

Find points that different from their neighborhood







"flat" region: no change in all directions "edge": no change along the edge direction

"corner": significant change in all directions

Gert Kootstra – Interest Points

Summer school, aug, 2010

The second-moment matrix

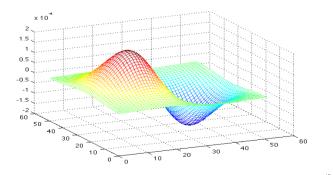
The second-moment matrix

Smoothing

$$M = \sigma_D^2 g(\sigma_I) * \begin{bmatrix} I_x^2(\mathbf{x}, \sigma_D) & I_x(\mathbf{x}, \sigma_D) I_y(\mathbf{x}, \sigma_D) \\ I_x(\mathbf{x}, \sigma_D) I_y(\mathbf{x}, \sigma_D) & I_y^2(\mathbf{x}, \sigma_D) \end{bmatrix}$$

Derivatives computed with Gaussian kernels of scale $\sigma_{\rm D}$.

$$I_x(\mathbf{x}, \sigma_D) = \frac{\partial}{\partial x} d(\sigma_D) * I(x)$$

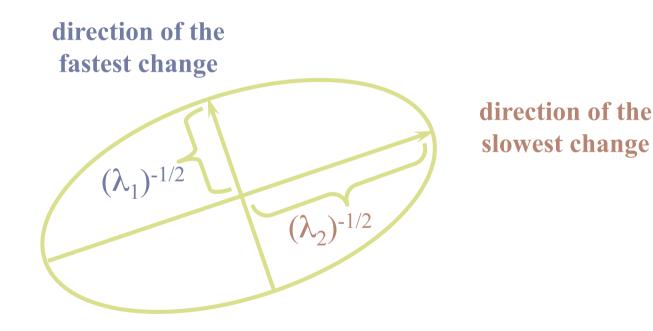


Summer school, aug.

Gert Kootstra – Interest Points

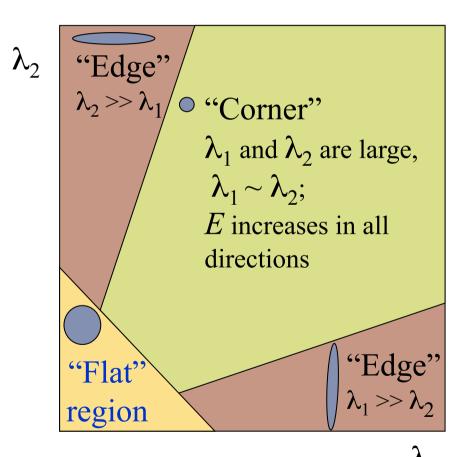
Eigenvalues

• The eigenvalues λ_1 and λ_2 of M represent the principal signal changes at **x**.



Eigenvalues

Classification of image points



Determinant and Trace

- No need to explicitly calculate the eigenvalues
 - Determinant of M is the product of λ_1 and λ_2
 - Trace of M is the sum of λ_1 and λ_2
- Harris cornerness:
 - $\blacktriangleright Det(M) = ad bc$
 - Trace(M) = a + d
 - $R = det(M) \kappa^* trace^2(M)$

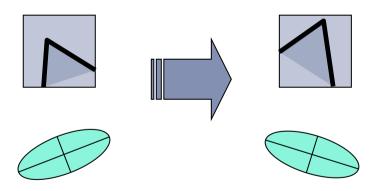
Finding local maxima in the image

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

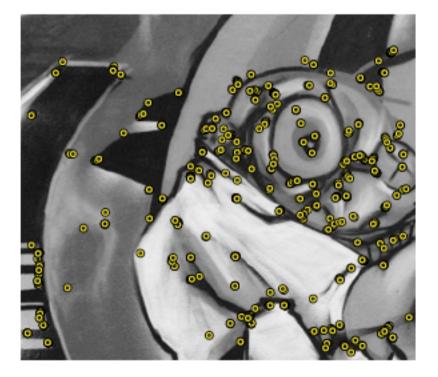
Summer school, aug. 20

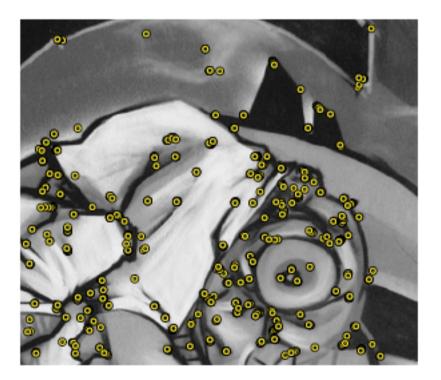
Rotational Invariance

- Harris detector is rotational invariance
- Ellipse (defined by eigenvectors of M) rotates with the image, so cornerness value remains the same



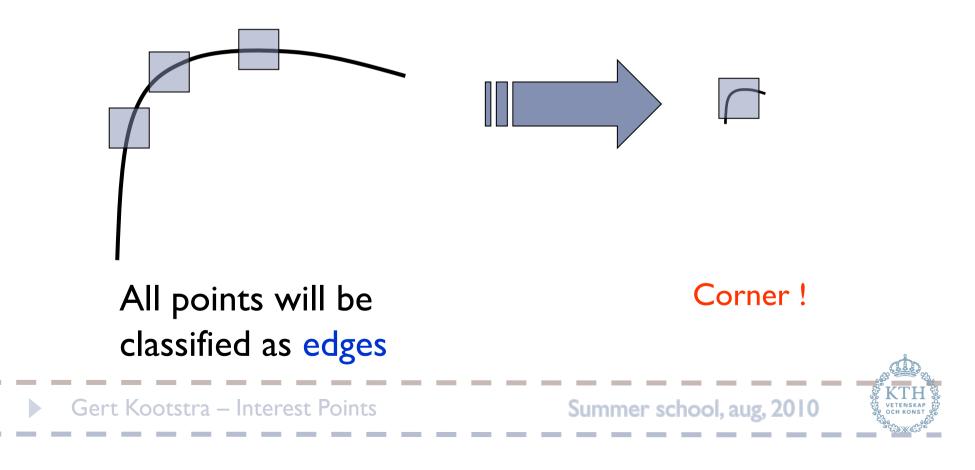
Harris corners on rotated image





Scale Invariance

The basic Harris detector is not invariant to changes in scale



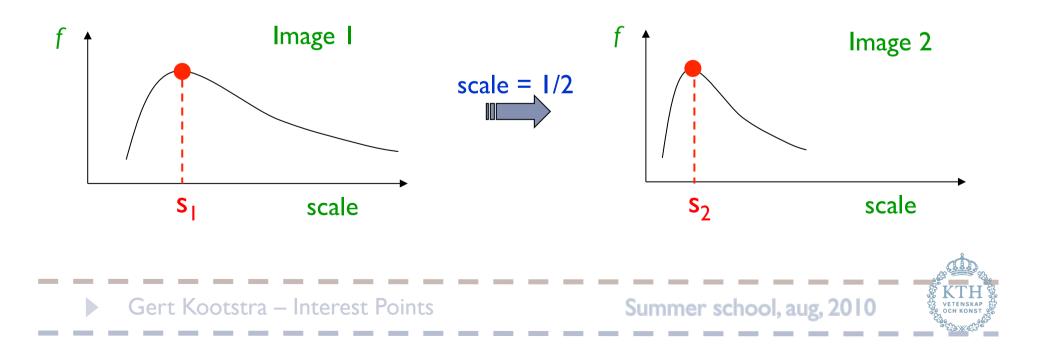
Scale-Invariance

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Summer school, aug, 2010

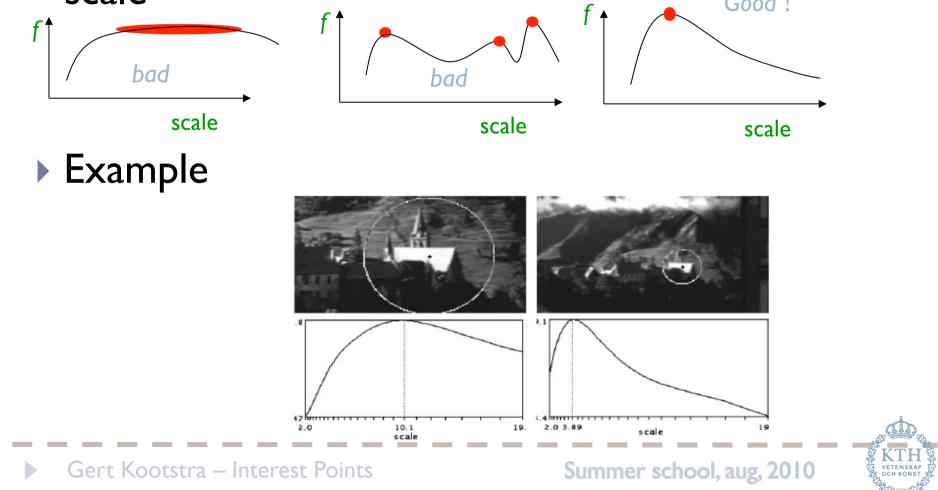
Scale-Invariance Detection

- Investigate the saliency (cornerness, ...) at different scales (T. Lindeberg).
- Characteristic scale: the scale that corresponds to the peak saliency



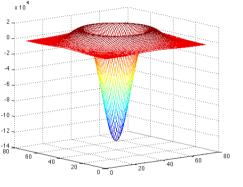
Scale-Invariance Detection

A good interest point corresponds to a unique scale

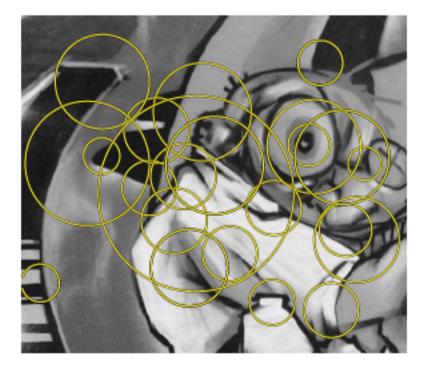


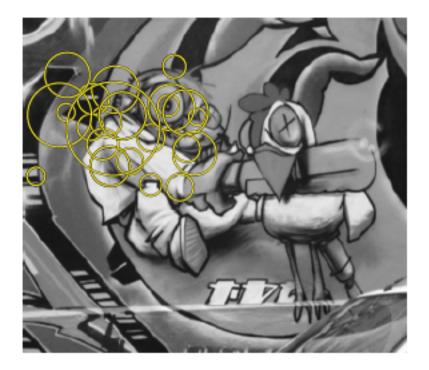
Harris-Laplace Detector (Mikolajczyk et al 2004)

- Using Laplacian of Gaussians for scale selection
 - Blob detection
- Two steps
 - Finding Harris points at different scale
 - Finding characteristic scale iteratively
 - Find local extremum over scale o^{k+1} in LoG for every Harris point x^k.
 - Reposition point by find local maximum in Harris measure close to x^k for scale σ^{k+1}.
 - Continue until convergence



Harris-Laplace Detector

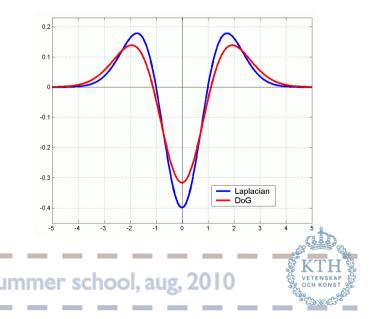




Scale-Invariant Feature Transform

▶ SIFT (Lowe 2004)

- Detects interest points on blobs
- Invariant to scale and rotation
- Based on Difference of Gaussians
 - Approximation of Laplacian of Gaussians
 - Faster
 - Second-order derivative of image intensity



Scale-Invariant Feature Transform

Pyramid of Gaussian images for different scales

Scale (first octave)

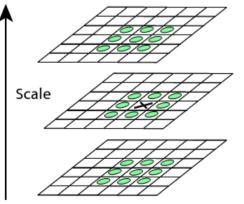
- $L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$
- Pyramid of DoG images

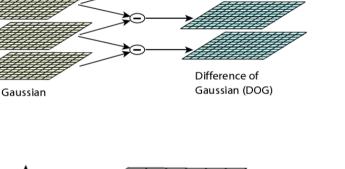
 $D(x,y,\sigma) = L(x,y,k\sigma) - L(x,y,\sigma)$

Local extrema detection

Gert Kootstra – Interest Points

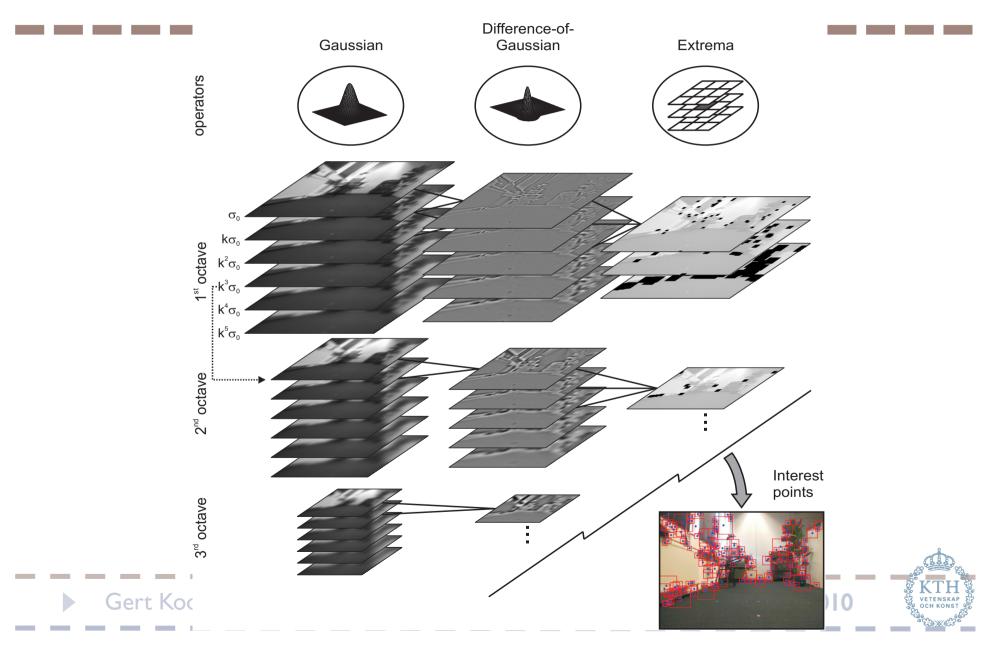
Minima and maxima in local
 3x3x3 scale-space





Summer school, aug, 2010

Scale-Invariant Feature Transform



Accurate Localization of IP

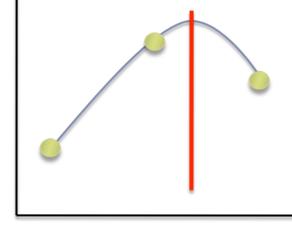
- Sub-pixel localization of the interest point
 - Especially important for higher/coarser scales
- Fitting a quadratic function to the surrounding values using Taylor expansion

D(x)

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x},$$

Find optimum of D(x)

Gert Kootstra – Interest Points

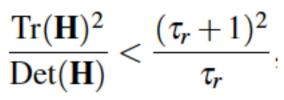


Eliminate Edge Responses

- Using the DoGs some interest points will be found along strong edges in the image
- Edge point are not uniquely localizable
- Test 'blobness' using the Hessian
- The eigenvalues of H are proportional to the curvature of D

Gert Kootstra – Interest Points

$$\mathbf{H} = \left[\begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right],$$



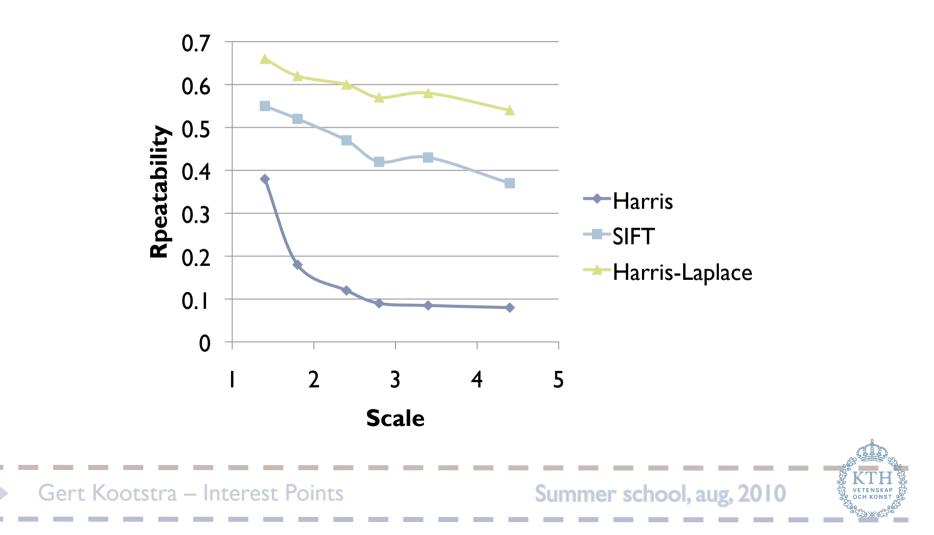
Summer school. aug. 20

• Only accept points with similar eigenvalues (ratio between the two is lower than τ_r)

SIFT Detector Example

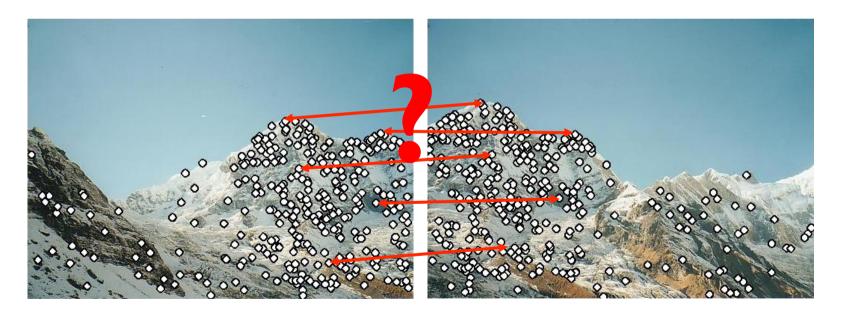
Interest-Point Detectors

Repeatability



Interest-Point Descriptor

- We now know how to detect interest points
- Now we need to describe them, in order to recognize them later



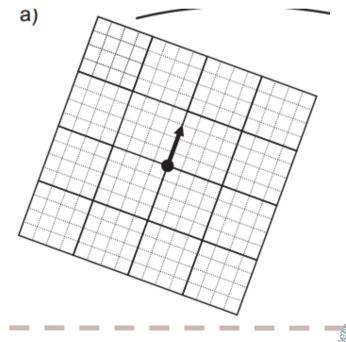
SIFT Descriptor

- The SIFT descriptor (Lowe 2004)
 - Currently most popular descriptor
 - Based on Histograms of Oriented Gradients
 - Describes the texture in the IP's neighborhood
 - Provides quite unique and identifiable descriptors

Scale and Rotational Invariant

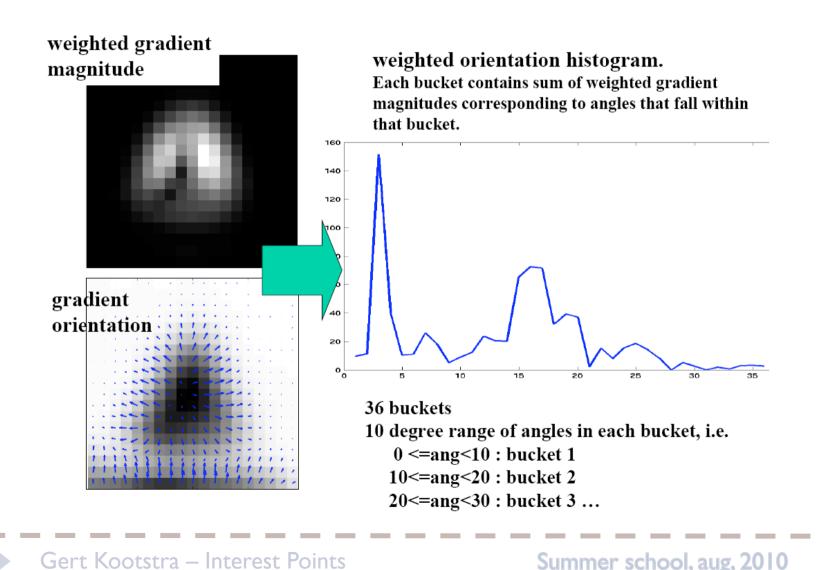
Scale and Rotational Invariant

- Size of window depending on the scale of the IP
- Orientation based on dominant gradient orientation in the local surrounding of the IP
- If multiple dominant orientations, then multiple descriptors



Summer school. aug. 2010

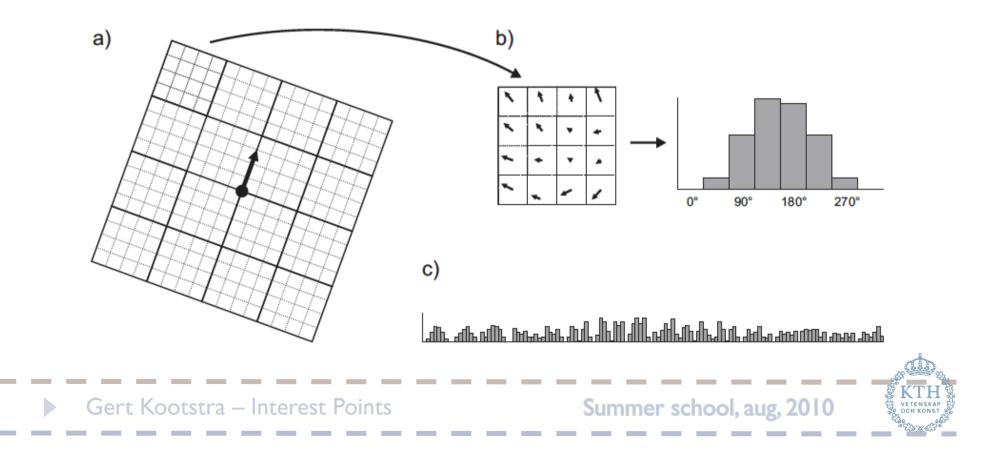
Orientation Assignment



Histograms of Oriented Gradients

HOGs

4x4 histograms, 8 bins per histogram = 128 features

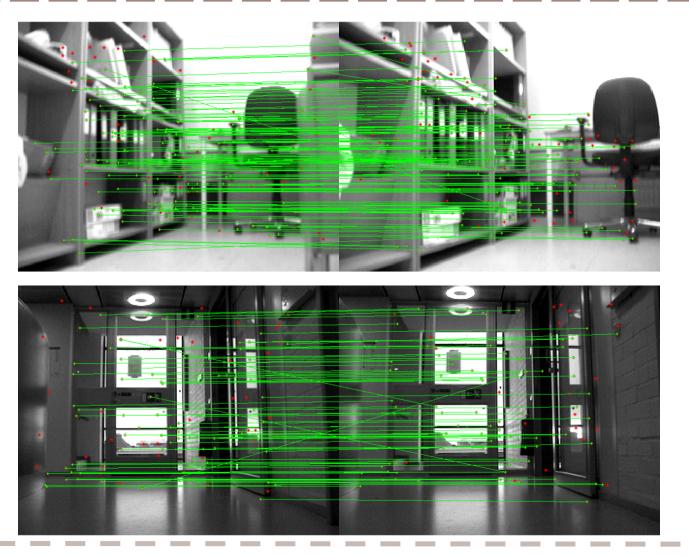


SIFT Descriptor

Robust to illumination

- Changes in illumination have little effect on the orientation of the image gradients
- Might have some effect on the gradient magnitudes, but therefore the histograms are normalized.

Matching example



Summer school, aug, 2010

SIFT Results

- Best performance in the study of Mikolajczyk
 & Schmid 2005
- Among best for all tests:
 - Viewpoint changes
 - Scale changes
 - Image rotation
 - Image blur
 - JPEG compression
 - Illumination changes

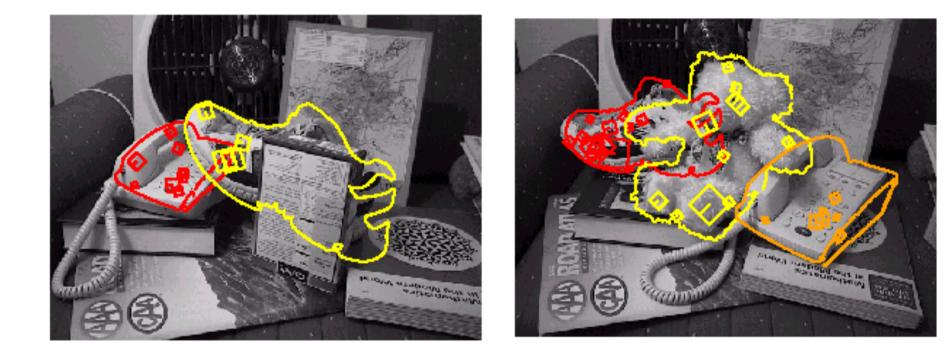
Some Examples

Robotic Localization and Mapping

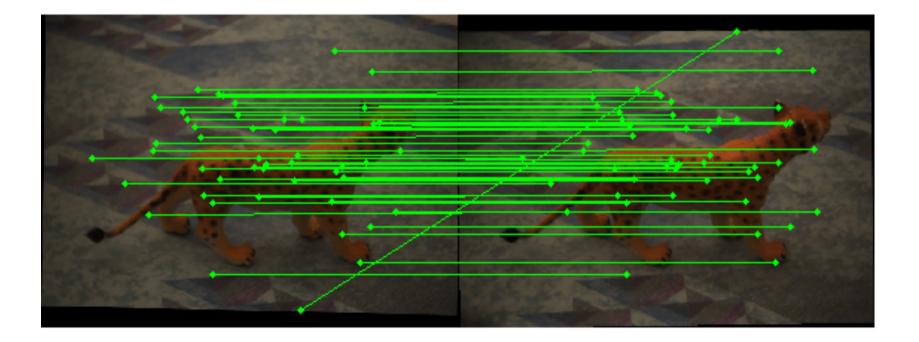


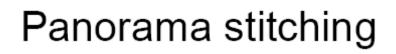
Summer school, aug, 2010

Object Recognition



Stereo Matching





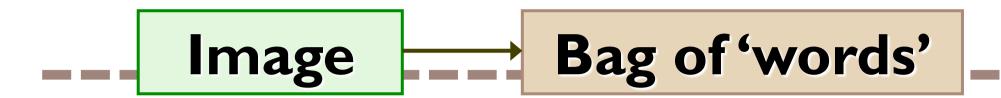
(a) Matier data set (7 images)

(b) Matier final stitch

Brown, Szeliski, and Winder, 2005

Bag of Features

- In the presented form interest points are very suitable for object recognition
- Not so good for object/image classification and retrieval
 - SIFT points and descriptor are too specific
 - Variable number of points, so total feature vector of image has unknown size
- The Bag-of-Features approach



Summer school, aug, 2010

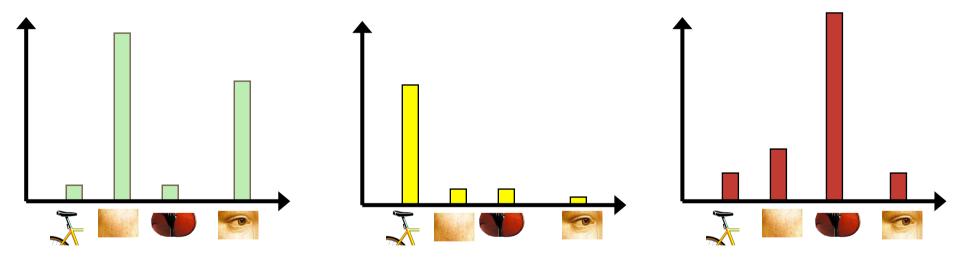
Analogy to documents

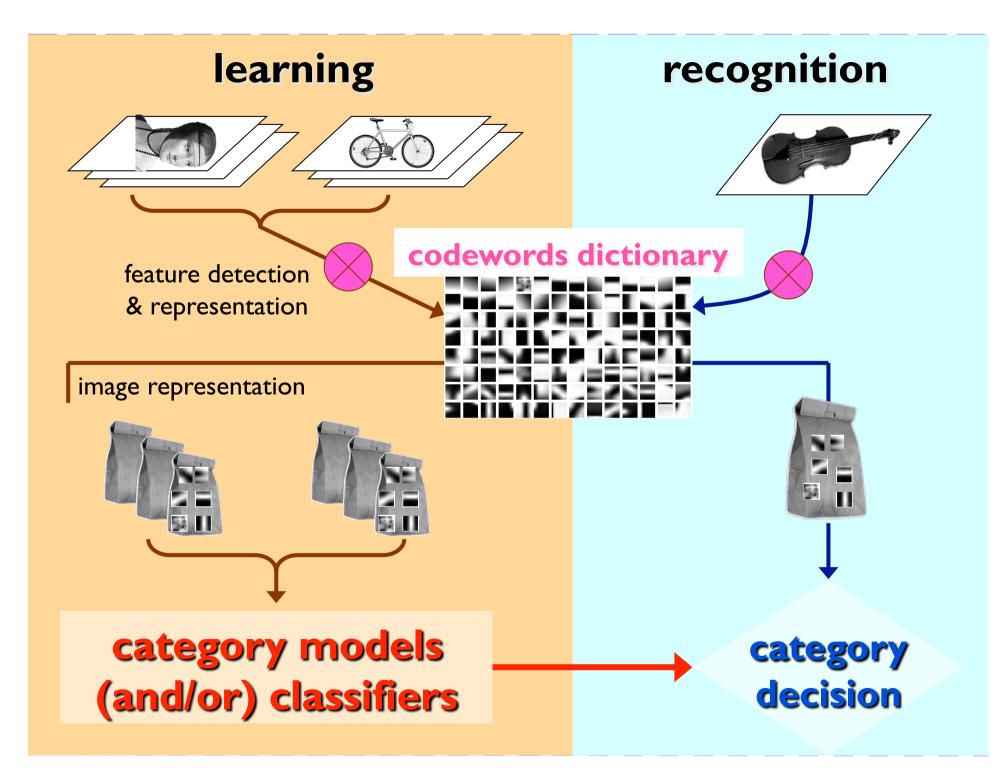
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception Laround us is based essentially each the brain from *c* sensory, brain, thought the visual, perception, point by cerebra retinal, cerebral cortex, upon w eye, cell, optical Through now kno nerve, image perception Hubel, Wiesel more compl the visual impu rious cell layers of the op-Niesel have been able to demonstrate that th age about the image falling on the retina under step-wise analysis in a system of nerve cells columns. In this system each cell has its specifi function and is responsible for a specific detail in pattern of the retinal image.

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surplus would dicted 30% b a 18% jump in expo China, trade, rise in imp elv to further surplus, commerce, China's exports, imports, US, delibera surplus yuan, bank, domestic, factor. B foreign, increase, said the trade, value boost dom within the co the yuan against nd permitted it to trade w but the US wants the yuan to be allowed t freely. However, Beijing has made it clear will take its time and tread carefully befor allowing the yuan to rise further in value.

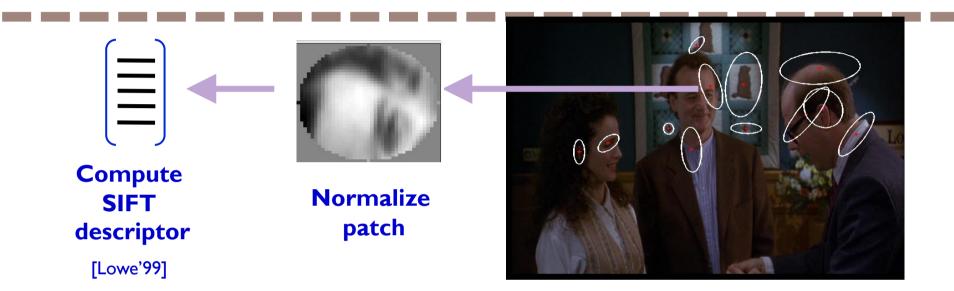
Gert Kootstra – Interest Points

Summer school, aug, 2010





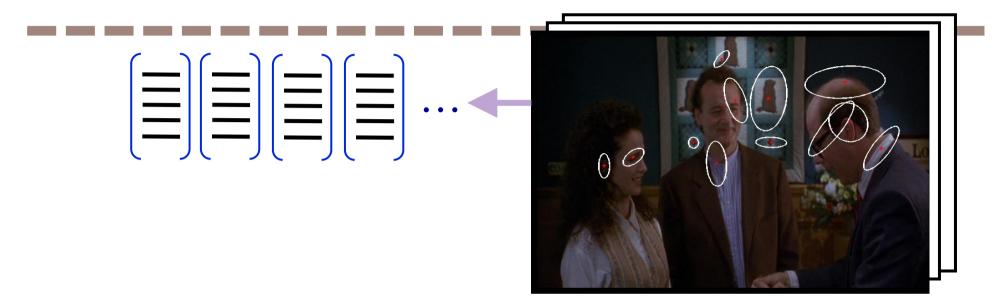
Interest Point Features



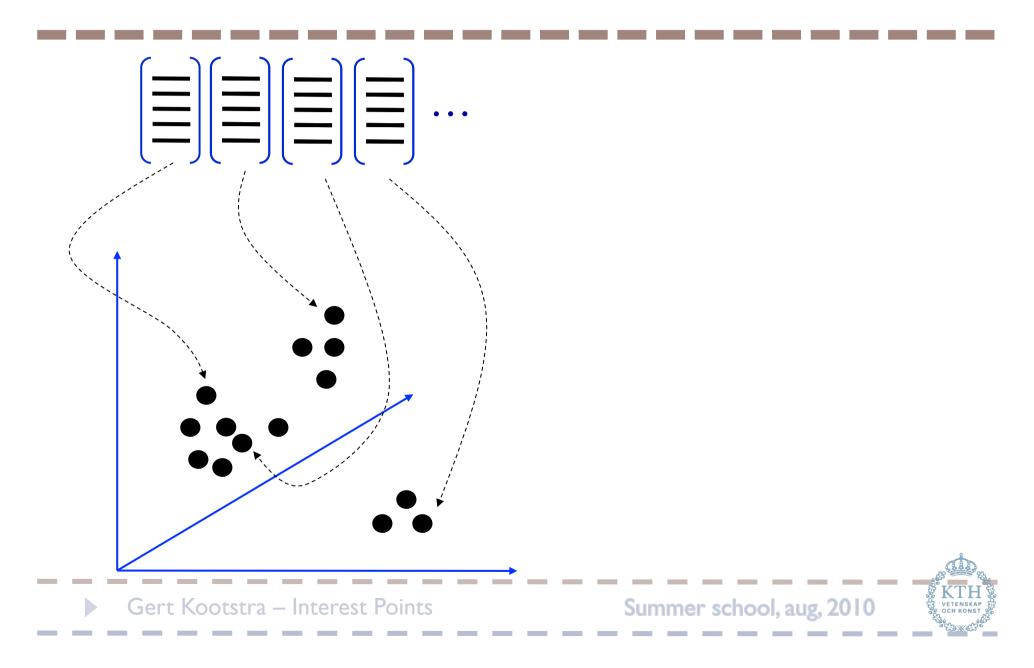
Detect patches

[Mikojaczyk and Schmid '02] [Matas et al. '02] [Sivic et al. '03]

Interest Point Features



dictionary formation



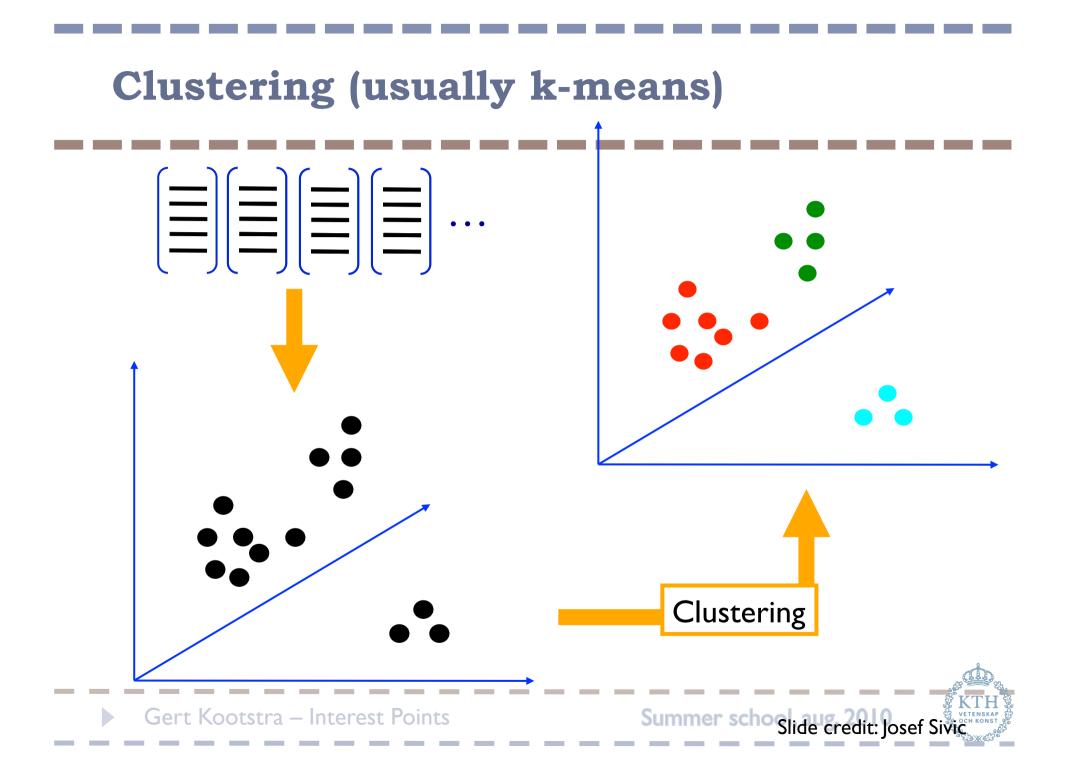




Image representation

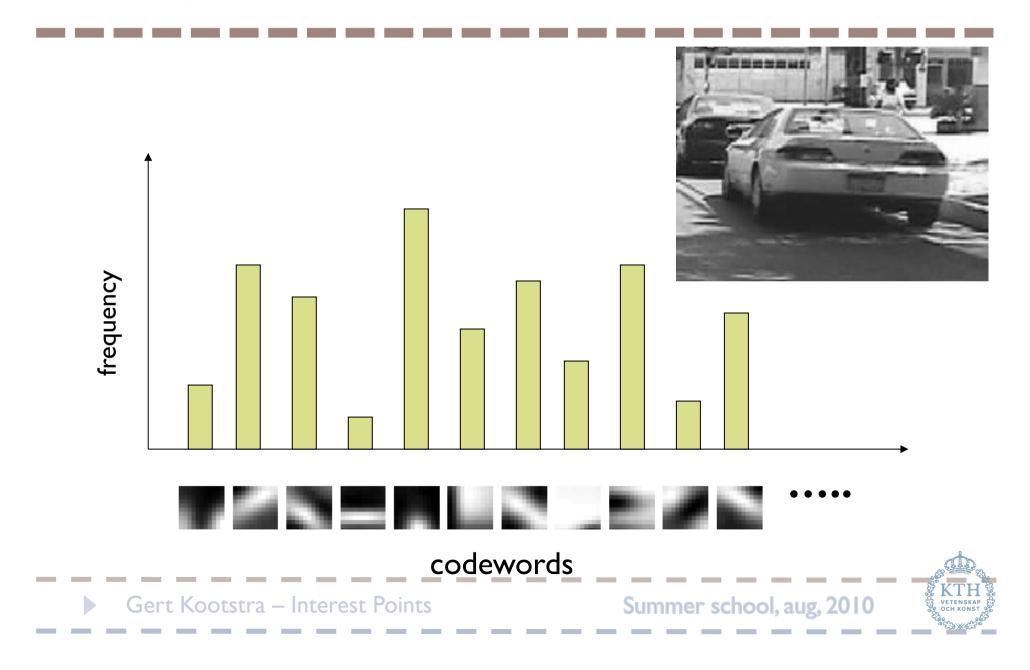
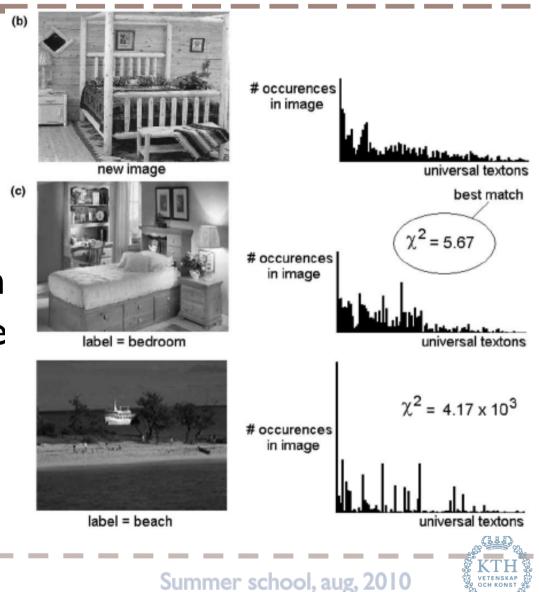


Image Matching

- Interest points
- IP descriptors
- Make visual-word histogram
- Compare histogram
 to histograms in the
 databse

Gert Kootstra – Interest Points



Bag of Words

- Works well for image/object classification
- Reduces the number of features
 - Standard SIFT
 - ±1,000 IPs per image, 128 D feature vector
 - Bag of Words
 - I,000-10,000 words
- But loss of geometric information

Summary

- Local features
- Interest-point detectors
 - Harris / Harris-Laplace
 - SIFT detector (DoG)
- Interest-point descriptors
 - SIFT descriptor (HOG)
- Bag of words

