110100100100100010111000**01011**0

Bayesian Estimation: Localization

Gert Kootstra

VETENSKAP

Lecture Overview

Robotic localization and the Bayesian filter

- Modeling noise
- ► Two examples of filters
 - ► Kalman Filter
 - Particle Filter

Introduction to Simultaneous Localization and Mapping Localiztion

- Determining the location of the robot in the world
- Essential ability for a robot that needs to navigate in complex environments
- Popular method: Bayesian Filters

$$P(x_t \mid z_{0...t}, u_{0...t})$$

- Based on the sensor readings Z_t and actions u_t
- What is the probability to be at position X_t ?

???

Markov Assumption

The current situation depends only on the previous:

$$P(x_t \mid x_{o:t-1}) = P(x_t \mid x_{t-1})$$
 Transition model

The observation only depends on the current situation:

$$P(z_t \mid x_{0:t}, z_{0:t-1}) = P(z_t \mid x_t)$$
 Sensor model

Benefits:

- Constant computation and memory demand
- Usable in real-time situations: robotics

Bayesian Filter

- Iterative process for robot localization
- Transition model:

$$P(x_{t+1} | z_t) = \int_{-\infty}^{\infty} P(x_{t+1} | x_t) P(x_t | z_t) dx_t$$

Sensor model:

$$P(x_{t+1} | z_{t+1}) = o(P(z_{t+1} | x_{t+1}))P(x_{t+1} | z_t)$$

Lecture Overview

- Robotic localization and the Bayesian filter
- Modeling noise
- ► Two examples of filters
 - Kalman Filter
 - Particle Filter
- Introduction to Simultaneous Localization and Mapping

Transition Model

Transition model

- Given the estimate of the current robot position X_t
- What is the probability that the robot is at X_{t+1} in the next time step?
- The probability models the noise and uncertainty in the transition of robot.

Gert Kootstra – Bayesian Estimation Summer school, Lappeenranta, Aug 2010

Transition Model

- More complex model (in particle filter)
 - Noise in transition
 - Noise in rotation

& c

Noise in orientation

Sensor Model

Sensor model

- Given the estimate of the current robot position X_t
- What is the probability that the robot makes the observation Z_{t} ?
- A map of the environment needs to be known to get this probability
- Noise of the robot's sensors are incorporated in this probability

Sensor Model

Simple sensor model

- $\triangleright Z^*$ is the expected observation given the estimated position in the map X_t
- Model of the sensor noise

Lecture Overview

- Robotic localization and the Bayesian filter
- Modeling noise
- Two examples of filters
 - ► Kalman Filter
 - Particle Filter
- Introduction to Simultaneous Localization and Mapping

Bayesian Filters for Localization

- Two well-known filters
 - (Extended) Kalman Filter
 - Particle Filter (Monte-Carl Localization)
- Location of the robot is estimated based on
 - The action that the robot performs
 - The observation that the robot makes
 - A known map of the environment

Lecture Overview

- Robotic localization and the Bayesian filter
- Modeling noise
- Two examples of filters
 - Kalman Filter
 - Particle Filter

Introduction to Simultaneous Localization and Mapping Kalman Filter

- The transition and the sensor observation are both modeled with Gaussian distributions
- Two steps
 - Prediction step: The transition model

$$P(x_{t+1} | z_t) = \int_{-\infty}^{\infty} P(x_{t+1} | x_t) P(x_t | z_t) dx_t$$

Update step: The sensor model $(x_{t+1} | z_{t+1}) = \alpha P(z_{t+1} | x_{t+1}) P(x_{t+1} | z_t)$

Gert Kootstra – Bayesian Estimation Summer school, Lappeenranta, Aug 2010

Kalman Filter: Prediction Step Applying the transition model $N(x_t, \sigma_t^2)$ $N(x_{t'}, \sigma_{t'}^2)$ The estimated position Odometrie: $\Delta x, \sigma_r^2$ 1.5 $x_{t'} = x_t + \Delta x$ $P(x_t \mid Z_t) = N(3, \frac{1}{2})$ Q $\sigma_{t'}^2 = \sigma_t^2 + \sigma_x^2$ $P(x_{t+1} \mid Z_t) = N(4, \frac{3}{4})$ 0.5 8 9 5 6 Х Gert Kootstra – Bayesian Estimation Summer school, Lappeenranta, Aug 2010 Kalman Filter: Update Step

Applying the sensor model

 $N(x_{t'},\sigma_{t'}^2)$

1.5

 $x_{t+1} = \frac{\sigma_z^2 \cdot x_{t'} + \sigma_{t'}^2 \cdot z_{t+1}}{\sigma_z^2 + \sigma_{t'}^2}$ $|Z_{t+1}) = N(4.6, 0.3)$

 $N(x_{t+1}, \sigma_{t+1}^2)$

Kalman Filter

- Efficient integration of the motion and the observation of the robot for localization
- Disadvantage:
 - Only unimodal distributions can be modeled

Lecture Overview

- Robotic localization and the Bayesian filter
- Modeling noise
- Two examples of filters
 - Kalman Filter
 - Particle Filter
- Introduction to Simultaneous Localization and Mapping

Particle Filters

- Representation using a set of particles
- The density of particles represents the

- Distribution can take any form
- Enough particles need to be used

Particle Filters for Localization

The task of the particle filter is to distribute the particles to represented

$$P(x_t \mid x_{t-1}, z_t, u_t)$$

- By incorporating
 - The robot's observation
 - The robot's action
- Termed: Monte-Carlo Localization

- Initially the particles are randomly distributed
 - No prior information about the robot's location

Step I: Applying the transition model

Based on odometry of the robot

Gert Kootstra – Bayesian Estimation Summer school, Lappeenranta, Aug 2010

Step 2: Applying the sensor model

Probability of particle based on observation

- Step 3: Resample the particle population
 - Sample proportional to the probability of particles

By iteratively applying step 1-3, the particle population converges to the true distribution

MCL Example

Many particle,

Few particle,

Few particles, initial position unknown initial position known initial position unknown

Kalman Filter vs Particle Filter

Kalman Filter

- Efficient update, low memory
- Can only model unimodal Gaussian distributions

Particle Filter

- Transition and sensor distributions can take any form
- Needs sufficient number of particles, depending on the size of the environment
- Less efficient

Lecture Overview

- Robotic localization and the Bayesian filter
- Modeling noise
- Two examples of filters
 - ► Kalman Filter
 - Particle Filter

 Introduction to Simultaneous Localization and Mapping

Simultaneous Localization and Mapping

- Map of the environment is unknown
- Build the map, and...
- ... use the map to localize
- Chicken-egg problem
 - Map is needed for localization
 - Location needs to be know to create map
- Problem
 - Uncertainty of robot's position grows

SLAM: Growing Uncertainty

Gert Kootstra – Bayesian Estimation

Summer school, Lappeenranta, Aug 2010

SLAM: Loop Closing

Gert Kootstra – Bayesian Estimation

Summer school, Lappeenranta, Aug 2010

SLAM: Example

Dieter Fox, Sebastiaan Thrun en Wolfram Burgard

This Lecture

- Robotic localization and the Bayesian filter
- Modeling noise
- Two examples of filters
 - Kalman Filter
 - Particle Filter
- Introduction to Simultaneous Localization and Mapping

