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Lecture Overview

» Robotic localization and the Bayesian filter




Localiztion

» Determining the location of
the robot in the world

» Essential ability for a robot that
needs to navigate in complex environments

» Popular method: Bayesian Filters

P(x, 1z, ,,u, ,)

Based on the sensor readings z, and actions 1,

What is the probability to be at position X, ?



» Bayes’ rule: P(x |z,)

P(z|x)- P(x)

! ‘ Normaling factor

P(x|z)=a-P(z|x): P(x)

P(x|z) =




Markov Assumption

» The current situation depends only on the
previous:

P(xt ‘ xoj_l) = P(xt ‘ xt_l) Transition model

» The observation only depends on the current
situation:

P(Zt ‘ xozt,Zo:t_l) = P(Zt | xt) Sensor model

» Benefits:

Constant computation and memory demand
Usable in real-time situations: robotics



Bayesian Filter

» Iterative process for robot localization
» Transition model:

P(5 12) = [P |3 P, |2

» Sensor model:

6@} @ZZ’H ‘ ;)D(XHI | Zt)




Lecture Overview

» Modeling noise




Transition Model

» Transition model
P(xt+1 ‘xt)

Given the estimate of the current robot position X,
What is the probability that the robot is at X,_;
in the next time step!?

The probability models the noise and uncertainty in
the transition of robot.




Transition Model

» Simple Gaussian model P()Ct+1 ‘ xt)

I:)(Xt+ I |Xt)

P(Xcr %)




Transition Model

» More complex model (in particle filter)

Noise in transition
Noise in rotation

Noise in orientation
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P(xt+1 ‘xt)




Sensor Model

» Sensor model

P(z, | x,)

Given the estimate of the current robot position X,
What is the probability that the robot makes the
observation Z, ?

A map of the environment needs to be known to
get this probability

Noise of the robot’s sensors are incorporated in
this probability




Sensor Model

» Simple sensor model P(Zt ‘ xt)

Z * is the expected observation given the
estimated position in the map X,

Model of the
Sensor noise /\

P(ztlxt)

J o\




Sensor Model

» More complex sensor model P(Zt ‘ xt)
10
8t
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Lecture Overview

» Two examples of filters




Bayesian Filters for Localization

» Two well-known filters
(Extended) Kalman Filter
Particle Filter (Monte-Carl Localization)

» Location of the robot is estimated based on
The action that the robot performs
The observation that the robot makes

A known map of the environment



Lecture Overview

Kalman Filter




Kalman Filter

» The transition and the sensor observation are
both modeled with Gaussian distributions

» Two steps
Prediction step: The transition model

P(xt+1 |Zt) =ﬁwp(xt+1 |xt) (xt |Zz) X
Update step: The sensor model

<?\)(‘xﬁl | ZQ) - aP(ZHl | ‘xt+1)P(‘xt+1 | Zt)




Kalman Filter: Prediction Step

» Applying the transition model
N(x,0;) == IN(x,,0,)

The estimated position

15

Odometrie: Ax,Oj

HP(x | z,) = N(3,7) _ X, =X, +Ax

o 2 2 2
\P(xm |z,)=N(4,7) 0,=0, +0,

0.5}

.




Kalman Filter: Update Step

» Applying the sensor model
N(Xt,,()'tz.) —- N(xz+lﬂat2+1)

15
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Kalman Filter

» Efficient integration of the motion and the
observation of the robot for localization

» Disadvantage:
Only unimodal distributions can be modeled

10

P(zlx)
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Lecture Overview

Particle Filter




Particle Filters

» Representation using a set of particles

» The density of particles represents the
distribution [ |

» Distribution can take any form
» Enough particles need to be used



Particle Filters for Localization

» The task of the particle filter is to distribute
the particles to represented

P(xt | X194, ’ut)

» By incorporating
The robot’s observation

The robot’s action

» Termed: Monte-Carlo Localization



Monte-Carlo Localization

» Initially the particles are randomly distributed

No prior information about the robot’s location

C ® O




Monte-Carlo Localization

» Step |: Applying the transition model
Based on odometry of the robot
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Monte-Carlo Localization

» Step 2: Applying the sensor model

Probability of particle based on observation

Observation : ‘Observation’
P;0.9 P=‘).7 P=0.6 of robot, z of particle 3
P=0.4
.O P=g.|
P=0. |
®
P=0.3
¢ P_g'l P=0.| Calculate the probability,
p=g.| ® P(z|x;) using thf distributjon




Monte-Carlo Localization

» Step 3: Resample the particle population
Sample proportional to the probability of particles




Monte-Carlo Localization

» By iteratively applying step |-3, the particle
population converges to the true distribution




MCL Example

<

Many particle, Few particle, Few particles,
initial position unknown initial position known initial position unknown

Summer school, Lappeenranta, Aug 2010



Kalman Filter vs Particle Filter

» Kalman Filter
Efficient update, low memory
Can only model unimodal Gaussian distributions

» Particle Filter

Transition and sensor distributions can take any
form

Needs sufficient number of particles, depending on
the size of the environment

Less efficient



Lecture Overview

» Introduction to Simultaneous Localization
and Mapping




SLAM

» Simultaneous Localization and Mapping
Map of the environment is unknown
Build the map, and...
... use the map to localize
» Chicken-egg problem
Map is needed for localization

Location needs to be know to create map

» Problem

Uncertainty of robot’s position grows



SLAM: Growing Uncertainty
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SLAM: Loop Closing
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SLAM: Example

Dieter Fox, Sebastiaan Thrun en Wolfram Burgard

» Gert Kootstra — Bayesian Estimation Summer school, Lappeenranta, Aug 2010



This Lecture

» Robotic localization and the Bayesian filter
» Modeling noise

» Two examples of filters
Kalman Filter

Particle Filter

» Introduction to Simultaneous Localization
and Mapping



