Image Filtering and Stereo
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Multi-Camera Geometry

Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006
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Thin Lens Model

Geometric Distortion

No distortion Pincushion Distortions Barrel Distortions
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Camera Parameters

® Determine the intrinsic parameters of a camera (with lens)
® What are Intrinsic Parameters!?

® Focal Length f

® Pixel size sx,sy (ku,kvy)

® Distortion coefficients k; , ka...

® |mage center uop, Vo
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Camera Model
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Camera Model
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* M= Matrix of Perspective Projection
[ = Matrix of Intrinsic Parameters

 E = Matrix of Extrinsic Parameters (Rotation + Translation)
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ldeas for Camera Calibration

Camera Model

| LLocations
—
Locations and Parameters

in the world in the image
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A Designed Object
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amera Calibration
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Camera Calibration Toolbox for Matlab
* http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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Features in Computer Vision

® What is a feature?
® | ocation of sudden change
® Why use features!
® |nformation content high
® |nvariant to change of view point, illumination

® Reduces computational burden
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Image Feature Simplification

Image 1

Feature 1

Feature 2 Computer

: Vision
Feature N Algorithm
Feature 1

Feature 2

Feature N
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What makes for GOOD features!?

® |nvariance
® View point (scale, orientation, translation)
® Lighting condition
® Object deformations
® Partial occlusion
® Other Characteristics
® Uniqueness
e Sufficiently many

® TJuned to the task
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First Feature: Edge

® Depth discontinuity

® Surface orientation
discontinuity

: . o 1AL

® Reflectance discontintity
(i.e., change in surface ™\
material properties) ‘\(\& _

-

® |llumination disconti
(e.g., shadow)
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How to find Edges!?

Basic Filtering === Edge Detection




Basic Image Filtering

® Modify the pixels in an image based on some function of a local
neighborhood of the pixels

0] 5|3 Some function

4 | 5 1 — /
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Linear Filtering

® |inear case is simplest and most useful
® Replace each pixel with a linear combination of its neighbors.

® The prescription for the linear combination is called the convolution
kernel.
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Linear Filter = Convolution
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Linear Filter = Convolution
f[m,n]z]@g=21[m—k,n—l]g[k,l]

with ) glk,/]=1
k.l

® Example on the web: www.jhu.edu/~signals/convolve

® Matlab function: conv(ID) or conv2(2D)
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Original Image
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Slight Blurring
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Lots of Blurring
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Gaussian
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Gaussian Smoothing to Remove
Noise




Some kernels
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These kernels are Gradient
operators

® Edges are discontinuities of intensity in images
® Correspond to local maxima of image gradient

® Gradient computed by convolution

® General principle applies:
® Slight smoothing: Good localization, poor detection

® More smoothing: Poor localization, good detection
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Smoothing Effects
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Canny Edge Detector
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Canny’s Result

® Given afilter f, define the two objective functions:
® A(f) large if f produces good localization
® B(f) large if f produces good detection

® Problem: Find a family of f that maximizes the compromise criterion A(f)B
(f) under the

constraint that a single peak is generated by a step edge.

® Solution: Unique solution, a close approximation is the Gaussian derivative.

Wednesday, August 11, 2010



Next Steps

® The gradient magnitude enhances the edges but 2 problems remain:
®  What threshold should we use to retain only the “real” edges?

® Even if we had a perfect threshold, we would still have poorly localized edges. How to optimally localize contours?

° Solution:

® Non-local maxima suppression

® Hysteresis thresholding
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Non-Local Maxima Suppression

VI B

Gradient magnitude at center pixel

is lower than the gradient magnitude

of a neighbor in the direction of the gradient
- Discard center pixel (set magnitude to 0)

VI

Gradient magnitude at center pixel
Is greater than gradient magnitude
of all the neighbors in the direction
of the gradient

- Keep center pixel unchanged
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Non-Local Maxima Suppression

® Select the single maximum point across the width of an edge




Hysteresis Ihresholding

g
/”/’/;,
. L
Weak pixels but connected N _ _
—1 Weak pixels but isolated
L
Very strong edge response. Weaker response but it is Continue. ...
Let's start here connected to a confirmed

edge point. Let’s keep it.
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Canny Edge Detector Algorithm

® Apply derivative of Gaussian
® Non-maximum suppression
® Thin multi-pixel wide “ridges” down to single pixel width
® Linking and thresholding
® | ow, high edge-strength thresholds

® Accept all edges over low threshold that are connected to edge over
high threshold
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Finding Correspondences Between
Images

® First step toward 3-D reconstruction
® First step toward tracking

® Object Recognition: finding correspondences between feature points in “training” and “test” images.
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Finding Correspondences
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Disparity
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Triangulation

Object Paint

L&ft Imape Fight Image

Left o Right
Centar of Projection Center of Projection
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Epipolar Line

L&ft Imape Right Image

pipolar Line

L= ft o Right
Lentar of Projection Center of Projection
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Epipolar Line
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Rectification
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Rectification
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Rectification




Disparity




Sum of Squared Differences

® Subtract pattern and image pixel by pixel and add squares:

ssd(u,v) = Z[I(u +XxX,Vv+ ) —P(x,y)]2

(x,y)eN

® |f identical ssd=0, otherwise ssd >0 Look for minimum of ssd with
respect to u and v.
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SSD

ssd(u,v) = Z[I(u +x,v+y)— P(x, y)]2

(x,y)eN
= Zl(u +x,v+y) + Z:P(x,y)2 -2 Z[(u +x,v+y)P(x,y)
(x,y)eN (x,y)eN (x,y)eN
Sum of squares Sum of squares of Correlation
of the window the pattern
(positive term) (CONSTANT term)

® SSD is minimized when correlation is largest or patches are most
similar
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Simple Example

X -




More realistic

Correlation

Pattern
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Normalized Cross-Correlation

Z[](u+x,v+y)—]_][P(x,y)—}_’]

nee(u,v) = Dp)en = —
\/ Z [](u+x,v+y)—]]2 Z[P(x,y)—P]
(x,y)eN (x,y)eN

® Between -l and |
® |nvariant to linear transforms

® |ndependent of the average gray levels of the pattern and the image
window
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With Normalization

Normalized Correlation

Pattern

Point of maximum correlation
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Baseline

<
<
<
® Short Baseline ® long Baseline
® Good Matching ® More Difficult Matching
® Few Occlusions ® More Occlusions
® Poor Precision ® Better Precision

Wednesday, August 11, 2010



Ambiguity
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Stereo Matching Functions

SSD:  (Sum of Squared Differences)

(I (x,v). 1 (x+d.y) = (x,y)—1 (x—d.y))’

SAD: (Sum of Absolute Differences)

p(I, (). 1, (et d ) = |1 (e ) = (x=d . p)
Correlation:

W, (x,v).l (x+d,y)=1,(x.y)I (x—d.,y)

Normalized Correlation:

l//(]] (xs J"’), ], (x -+ d, J)) — ]Z (x" J"’)-I,, (x o d* J) o I;I,.

0,0,.(d)
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Energy Minimization for Stereo

Disparity except at
continuous depth
IN most discontinuities
places,

® Matching pixels should have similar intensities.

® Most nearby pixels should have similar disparities

Minimize Z[Il(x—l_ D(xa y)ay) —]2(36, y)]2
+ A [D(x+1,y) = D(x, )]
+ 1> [D(x,y+1) = D(x, y).

2
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Graph Cuts

® Stereo is a labeling problem

® Graph cut corresponds to a labeling. (a) Binary Seg (b) Multi-way Cut

® Assign edge weights cleverly so that the min-weight cut gives the minimum energy!
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Graph Cuts Improvement

left image true disparities
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