
Exercise 1: The Scale-Invariant Feature
Transform

August 9, 2010

1 Introduction

The Scale-Invariant Feature Transform (SIFT) is a method for the detection and de-
scription of interest points developed by David Lowe [Lowe, 2004]. The method has
been successfully applied in many computer- and machine-vision applications, such as
object recognition, image retrieval, and robotic localization and mapping.

In this exercise, we will use SIFT for the representation of the environment of a robot.
We will use the detector to find interest points in the environment, and we will describe
those interest points with the SIFT descriptor, so that we will be able to store and
recognize the points. The main goal of this exercise is to play around with the different
parameters of the detector and descriptor to get a better grasp on the method.

2 Exercises

The detector is based on the filtering of the image with Difference of Gaussians:
D(σ) = G(σ)−G(kσ), a so-called Mexican-hat function. Lets visualize the Differ-
ence of Gaussian:

2.1 DIfference-of-Gaussian

• Start matlab

• Change directory to exercise_1.

• Create a Gaussian filter kernel of size 101× 101 and σ1 = 20.0 with
G1 = fspecial(’gaussian’, [101 101], 20.0);
Mind that the size of the kernel is much bigger than is actually used in the SIFT
method, but this is for displaying purposes.

1

• Create another Gaussian kernel of the same size, but with a σ2 = kσ1, where
k = 1.2.

• D = G1 - G2;

• mesh(D);

The Difference of Gaussians (DoG) can be compared to the center-surround receptive
fields found in the early visual processing in the human brain. You can visualize the
receptive field with imagesc(sign(D));. As the center-surround processing, the
DoG filter kernel will respond to white blobs on a black background (or the reverse if
you use D = G2 - G1;). Let us have a look at the result of filtering an image with
a DoG:

• Open an image: Irgb = imread(’circles_png’);

• Show image: imshow(Irgb);

• Convert it to gray scale: I = rgb2gray(Irgb);

• Convert to double precision values: I = im2double(I);

• Make a DoG kernel with σ1 = 7.0.

• Do the filtering: Idog = imfilter(I,D);

• Display the result: imagesc(Idog);

To detect blobs of different sizes, the image needs to be filtered with DoGs of different
sizes.

• Create a for loop with increasing σ1 and see how the filter response develops.

2.2 Separable filter

The above calculations are very slow due to the large size of the filter kernel. To
increase the speed, a number of tricks are applied in the SIFT method:

• Much smaller kernel sizes are used, with 1.6 ≤ σ ≤ 3.2 and size = 6 · σ.

• Instead of growing σ to larger and larger values, the image is down-sampled with
a factor of two when sigma > sigma0.

• Instead of using a DoG kernel, the image is filtered with two Gaussian kernels
with different σ values, and the two Gaussian-filtered images are subtracted. The
main advantage is that the 2D Gaussian kernel is separable into two independent
1D Gaussian kernels in the x and y direction. Confirm that this
G2D = fspecial(’gaussian’, [15 15], 1);
If1 = conv2(I, G2D)

2

gives the same result (except for some small differences in rounding) as
G1D = fspecial(’gaussian’, [15 1], 1);
If2 = conv2(conv2(I, G1D), G1D’);
and time the calculations by placing tic; before and toc; behind the code.
NB. imfilter already tries to separate 2D kernels into two 1D kernels.

2.3 Finding optima in scale-space

SIFT detects interest points in the image at points that are a local optimum (maximum
or minimum) in the DoG-filtered images both in xy-position as well as in scale (neigh-
borhood of 3× 3× 3), in order to get points that are unique in position and scale. We
will create a matlab script to calculate the local optima on different scales and octaves
of the image.

• Create a for loop to run through 3 different octaves. After each loop the image is
down-sampled by a factor of two by
I = G(1:2:end, 1:2:end, 1);,
where G(:,:,1) is the Gaussian-filtered image at the first scale in the octave.

• For each octave:

– Create a 3D matrix G with the Gaussian-filtered images at different scales:
G(:,:,sc) = imfilter(I, fspecial(’gaussian’, sz, s));
with s = 1.6 for the first scale and s = k*s for subsequent scales
where k = 2ˆ(1/nrScales). Set the size of the Gaussian kernel to
6 times s and make sure that the size is always an odd number, so that there
is a central cell. Mind that if you want S number of scales, we need S + 2
number of Difference of Gaussians (due to finding the optima in a 3×3×3
neighborhood), and therefore S + 3 scales of Gaussian images.

– Create a 3D matrix DoG with the S + 2 DoG images by subtracting the
Gaussian images:
DoG(:,:,sc) = G(:,:,sc) - G(:,:,sc+1);

– Find the local optima in the DoG matrix using Opt = localOptimum(DoG, th);.
The function returns a matrix of the same size as DoG with 1 for every local
optimum that has an absolute value higher then th. You can use find()
to get the xy-position of the maxima.
NB. You might have to recompile: mex localOptimum.cpp

– Plot the Gaussian images and the corresponding local optima for every oc-
tave and scale. Mind that the first and last scale of Opt contain zeros only.

• Play around with some different parameters and see how that influences the re-
sults. You can also try different images.

3

2.4 SIFT detection and description

Depending on the image and on the parameters, you might find many interest points
on edges in the image. These points, however, are not very unique. The SIFT detector
therefore tests all local optima to see if they are truly on a peak or on a ridge in the
DoG image. Furthermore, the positioning of the interest points is improved by fitting
a quadratic function to the data. This becomes especially important for positioning the
points in the image calculated on higher octaves. We will not go into the details of
these calculations, but rather proceed with the SIFT package of Andrea Vedaldi1.

• Include the sift package in Matlab’s path: addpath(’../sift’);

• Have a look at the documentation

• In the remaining of the exercise, we will use images from the KTH-IDOL2
database, containing a sequence of images recorded by a robot driving through
an office building. Get sequence information
sequenceInfo = getIDOLSequenceInfo(’min_cloudy1’);

• Load the first image of the sequence
I = imread(sequenceInfo(1).pngFileName);

• Convert to gray-scale and double using rgb2gray and im2double.

• Calculate the SIFT interest points and descriptors:
[frames, descriptors] = sift(I);

• View them:

imshow(I);
hold on;
plotsiftframe(frames);

• Try some different settings for a number of the parameters, for instance FirstOctave,
NumOctaves, NumLevels and see how that effects the interest points. You
can use size(frames,2) to get the number of points.

The SIFT descriptor describes the neighborhood of an interest point using Histograms
of Oriented Gradients (HOGs). The size of the neighborhood depends on the scale
at which the interest point is detected. This makes that the descriptor is invariant to
changes in scale. With plotsiftdescriptor, the descriptor can be displayed.
Standard, the neighborhood is split up into 4× 4 squares. For each square, a histogram
is made representing the orientations of the image gradients in the square. This his-
togram contains 8 bins. This results in a feature vector of 128 elements. With the
descriptor, interest points can be stored and compared to other points.

1http://www.vlfeat.org/˜vedaldi/code/sift.html

4

• Calculate the SIFT frames (interest point location, orientation, and scale) and
descriptors:
[frames, descriptors] = sift(I);.

• Plot some of descriptors:

imshow(I);
hold on;
plotsiftdescriptor(descriptors(:,i), frames(:,i));

• Get two consecutive images from the KTH-IDOL2 database and calculate the
SIFT frames and descriptors.

• Find the matching interest points
matches = siftmatch(descriptors1, descriptors2);

• View the matches: plotmatches(I1, I2, frames1, frames2, matches);

• In the matching process, the descriptor distance to the nearest neighbor and to
the second-nearest neighbor is found. Only when the distance to the nearest is
clearly shorter the match is accepted. This assures unique matched. The thresh-
old of the next-best-to-best ratio can be set as a third argument to siftmatch.
The default is 1.5. Try different settings and view the results.

2.5 SIFT for scene interpretation

We will now use the SIFT detector and descriptor to find interest points to describe the
environment of the robot. The interest points should be repeatable, meaning that they
should be redetectable in subsequent images, and they should be unique, meaning that
they should not match with interest points in different parts of the environment. We
will setup an experiment to test the repeatability and uniqueness of the interest points

• Implement a measure for the repeatability and the uniqueness

• Measure the repeatability and uniqueness at different parts of the environment
and calculate the mean and standard error.

• Test the influence of a number of SIFT parameters (for the detector and for the
matching). Make plots to view the repeatability and uniqueness as a function of
the parameters.

References

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91–110.

5

