
Robotics and Autonomous Systems 57 (2009) 1107–1118

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Tackling the premature convergence problem in Monte-Carlo localization

Gert Kootstra a,∗, Bart de Boer b
a Artificial Intelligence, Univesity of Groningen, The Netherlands, Postbus 407, 9700 AK Groningen, The Netherlands
b Univesity of Amsterdam, The Netherlands, Spuistraat 210, 1012 VT Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 10 July 2007
Received in revised form
2 July 2009
Accepted 8 July 2009
Available online 17 July 2009

Keywords:
Monte-Carlo localization
Particle filter
Premature convergence
Niching
Genetic algorithms

a b s t r a c t

Monte-Carlo localization uses particle filtering to estimate the position of the robot. Themethod is known
to suffer from the loss of potential positions when there is ambiguity present in the environment. Since
many indoor environments are highly symmetric, this problem of premature convergence is problematic
for indoor robot navigation. It is, however, rarely studied in particle filters. We introduce a number
of so-called niching methods used in genetic algorithms, and implement them on a particle filter for
Monte-Carlo localization. The experiments show a significant improvement in the diversity maintaining
performance of the particle filter.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many parts of our everyday real-world environment are more
or less identical. Many office buildings and apartment complexes
consist of identically looking rooms and hallways, as can for in-
stance be seen in the Robotics Data Set Repository (Radish) [2].
If we want our future robots to navigate through these environ-
ments, the robot localization techniques need to cope with these
symmetries and ambiguous situations. Monte-Carlo localization,
based on particle filtering, is currently the most used technique
for robot localization (e.g., [3]). A particle filter however cannot
deal with ambiguous situations, since it suffers from the prob-
lem of premature convergence [4,3]. The inherent properties of the
particle filter make the particle population quickly lose diversity.
Because of the loss of diversity, the filter is not able to maintain
several possible solutions, needed when there is ambiguity, but it
converges to one solution that might not represent the robot’s real
location. The problem is frequently obscured by using a high num-
ber of particles, Potentially KLD-sampling [5] is used, which adap-
tively changes the population size depending on the spread of the
particles measured by the Kullback–Leibler distance. However, it
is unclear if this method is able to maintain diversity. Clustering
methods (e.g., [32]) can be used to track multiple targets. How-
ever, these methods have the disadvantage that either the number

∗ Corresponding author. Fax: +31 0 50 363 6687.
E-mail addresses: G.Kootstra@ai.rug.nl (G. Kootstra), B.G.deBoer@uva.nl

(B. de Boer).

of targets needs to be known, which is generally not the case, or
sophisticated additional methods need to be used to adaptively es-
tablish the number of clusters. We propose an improvement upon
standard Monte-Carlo localization that deals with symmetric en-
vironments in a more fundamental, a more elegant, and moreover
a computationally more efficient way.

Premature convergence is not only a problem in Monte-Carlo
localization, but also in genetic algorithms [7,8]. This is not very
surprising, since genetic algorithms and particle filters are very
similar techniques. Both algorithms use a set of individuals or par-
ticles to represent an underlying probability function. In Monte-
Carlo localization this probability function is the probability of the
robot’s position, in genetic algorithms it is the fitness function. In
bothmethods, a new set of particles or individuals is formed based
upon random changes and selection. As a consequence of the sim-
ilarity between genetic algorithms and particle filters, both tech-
niques face the same problems, but can also benefit from the same
solutions as we demonstrate in this paper.

Despite the similarity between both algorithms, the transfer
of knowledge from one field to the other has been explored in
only a few papers. Higuchi [9], for instance, applied the genetic
algorithm’s operators mutation and crossover to the prediction
step of a particle filter. Bienvenue et al. [4] used fitness sharing, a
well known niching method in genetic algorithms, in their particle
filter to overcome premature convergence of the population. The
stability properties of particle filters and genetic algorithms are
discussed in [10]. Finally, Kwok et al. [11] aim to preserve diversity
by applying crossover and a diversification technique in a robotic
Simultaneous Localization and Mapping (SLAM) algorithm. These

0921-8890/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2009.07.003

http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:G.Kootstra@ai.rug.nl
mailto:B.G.deBoer@uva.nl
http://dx.doi.org/10.1016/j.robot.2009.07.003

1108 G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118

studies indicate that a systematic exploration of these similarities
can be beneficial for both genetic algorithms and particle filters.

We will specifically focus upon the problem of premature
convergence. This problem iswell-studied in the genetic algorithm
field. A number of so-called niching methods have been developed
to tackle the problem [7,8,12]. Although these methods proved
to be very effective, they are not used in particle filters, with the
notable exception of Bienvenue et al. [4], who use sharing, one of
the nichingmethods, inMonte-Carlo filtering. In this paper,wewill
systematically explore the possibilities to use the nichingmethods
from genetic algorithms in Monte-Carlo localization.

We believe that the proposed methods can be an important
improvement for using Monte-Carlo localization in symmetrical
environments. More generally, our results will be valid for particle
filters at large. Furthermore, we hope to convince the reader of the
possibility and relevance of transferring knowledge from the field
of genetic algorithms to the field of particle filters.

In Section 2, we describe the genetic algorithm and the parti-
cle filter and give their similarities. In Section 3, we introduce the
problem of premature convergence and a number of existing nich-
ingmethods in the field of genetic algorithms.We demonstrate the
applicability of thesemethods to particle filters forMonte-Carlo lo-
calization in Section 4, and describe the results in Section 5. Finally,
we discuss the implications of these results in Section 6.

2. Particle filters and genetic algorithms

Particle filters and genetic algorithms are two stochastic search
algorithms that use sample points in the search space, that apply
a variation to these points to explore the space, and that use
selection and reproduction to exploit good solutions. Although the
applications of the algorithms might be different, both algorithms,
in essence, are identical.

Particle filters can be traced back to Metropolis and Ulam
[13,14], who invented the Monte-Carlo method. The particle filter
tries to represent a distribution by a set of random samples
(particles) drawn from that distribution. Through a process of
variation, selection and resampling, the particles are redistributed
in order to better represent the distribution. Particle filters are
widely used for state estimation, for problems such as tracking, and
robot localization (e.g. [15]).

The goal of a particle filter is to approximate a distribution
by a set of weighted samples (or particles), so that the density
of the samples is proportional to the probability density of the
distribution. Particle filtering works in three steps: a prediction
step, a correction step and a resampling step. In Monte-Carlo
localization, the distribution we try to approximate is that of the
position of the robot in its environment. It can be approximated
by using a knowledge of the previous position of the robot, of the
action that was performed, and of the sensor observations that
were made. The prediction step is implemented by the transition
model (what happens to the robot after a given action), and the
correction step by the sensor model (what would we observe, given
the robot’s state and the map of the environment). The resampling
step selects particles for reproduction based on their weights set
by the sensor model. A more detailed description is outlined in
Section 4.1. For more information on Monte-Carlo localization and
particle filters we refer to [15,3].

Genetic algorithms have been introduced by Holland [16] and
a similar technique, evolutionary strategies, by Rechenberg [17].
Inspired by natural evolution, the genetic algorithm implements a
population of individuals that is prone to variation and (natural)
selection and reproduces generation after generation. Nowadays,
different forms of the algorithm are used as effective search
mechanisms for a variety of search and optimization problems
(e.g., [18,6]). Within population genetics, a subfield of biology,

techniques similar to genetic algorithms are used to study the
dynamics of evolutionary processes [19].

The close similarity between particle filters and genetic
algorithms has been pointed out by Higuchi [20] (as cited in [9])
and Moral, Kallel and Rowe [21]. As mentioned before, both
particle filters and genetic algorithms are based upon on variation,
selection and reproduction. Variation is used in both algorithms
for exploring the search space. In particle filters, this is taken care
of in the prediction step by randomly sampling from the motion
distribution. Genetic algorithms use mutation (and crossover) to
introduce variation in the population. Selection and reproduction
account for the exploitation of good solutions. In particle filters,
the probability of selecting a sample is defined by the importance
weights, which are assigned to the samples in the correction step
(which in Monte-Carlo localization is based on the sensor model).
Similarly, in genetic algorithms individuals are selected with a
probability that is proportional to their fitness. Finally, individuals
in both algorithms reproduce proportionally to their weight (or
fitness). Although reproduction is called resampling in particle
filters, the implementations are analogous. This demonstrates that
particle filters and genetic algorithms are essentially the same.
The consequence of this similarity is that both algorithms face
similar problems, and that similar solutions can be applied to these
problems.

3. Premature convergence and solutions

One of the major problems that both genetic algorithms
and particle filters suffer from is the problem of premature
convergence (see [22,12] for genetic algorithms and [4] for particle
filters). Premature convergence relates to the loss of diversity in
the population. Given a problemwithmultiple solutions, the entire
population will soon converge to just one of these solutions. The
reason for this is the presence of randomness in the selection
process along with a fixed population size. This causes random
genetic drift [7,19,14, chapter 2]. It can be shown that random
genetic drift always results in a homogeneous population, either
A or B, with a time to convergence inversely proportional to the
population size [19]. The resulting loss in diversity is undesirable,
since the maintenance of all potential solutions is crucial to find
the global optimum.

As an illustration of the problem of premature convergence,
consider the situation in Monte-Carlo localization as shown in
Fig. 1, where a loss of diversity results in a sub-optimal solution.
As can be seen, the environment is highly symmetric except for a
disambiguating object in the left hallway. In this situation, many
of the robot’s observations could have been made in more than
one place. In other words, there are many ambiguous situations,
and therefore multiple hypotheses of the robot’s position should
be maintained. The standard particle filter is used to determine
the location of the robot. Initially, the different potential solutions
are covered. However, the diversity quickly disappears as a
consequence of randomgenetic drift. In the first situation shown in
the figure, there is still some diversity and a number of particles is
close to the actual location of the robot. In a short time, however,
these particles are lost in favor of only one potential location. As
a consequence, the PF settles at a sub-optimal solution and will
never be able to find the correct solution. If the PF had maintained
more diversity, all ambiguous solutions would be maintained and
the optimal solution would be found once the robot observed the
disambiguating object.

The main cause of premature convergence is that solutions in
different niches (i.e. peaks in the fitness landscape) compete with
each other for limited resources (i.e., a limited number of particles).
In the remainder of this section we will discuss niching methods
from the genetic-algorithm literature that tackle the problem of
competition between different niches.

G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118 1109

Fig. 1. An example of premature convergence in Monte-Carlo localization. In
each snapshot, the robot is shown as a circle with its distance measurements. The
particles are depicted as black dots. The gray areas are obstacles and thewhite areas
are free space. The environment is highly symmetrical with the exception of an
object in the left hallway. In the first situation some diversity is still present in the
particle population. However, the diversity quickly disappears as a consequence of
random drift in sampling. This results in the system’s inability to correctly localize
the robot when the disambiguating object is encountered.

3.1. Niching methods

The role of niching methods [12] is to find and maintain
multiple solutions during the whole search process, even if some
of these solutions have lower fitness than others. Nichingmethods
aim to have selection pressure within a region (niche), but not
between different regions.

Wepresent three nichingmethods, i.e., crowding, fitness sharing,
and local selection. The first two methods are often used in genetic
algorithms and dominate the literature. We included the lesser-
known technique of local selection, because we believe that it is
especially suited for Monte-Carlo localization.

3.1.1. Crowding
The basic principle of all crowding models is that new individ-

uals enter the population by replacing the most similar individ-
ual. Crowding models are so called steady-state GAs, meaning that
only a subset of the population reproduces at a time, instead of the
whole population at once. De Jong’s crowding factor model [7] was
the first model that initiated this branch of niching algorithms. In
this model a proportion, called the generation gap, of the popula-
tion is selected for reproduction via fitness proportionate selection.
Mutation and possibly crossover are used to generate offspring.
For each offspring, a proportion, cf, of the population, the crowd-
ing factor, is randomly sampled. The offspring replaces the most
similar individual in that sample, where the similarity can be de-
fined either by the distance between the genotypes or the distance
between the phenotypes.

The model is ecologically inspired. Similar individuals in a
natural population usually live in the same environmental niche,
and thereby compete with each other for limited resources.
Dissimilar individuals, e.g . different species, on the other hand, live
in different niches and do not compete for the same resources.

To get an intuitive idea of why the algorithm promotes
diversity, consider the following situation: We have a population
with many individuals in niche A and just a few in niche B. In
the reproduction step, a sample of the size of the crowding factor
is taken for every individual that reproduces. Since individuals of
type A aremore frequent in the population, the samplewill contain
mainly individuals of type A. There is even a fair chance that for
a reproducing B, the sample consists of only As. In that case, an
individual A is replaced by the individual B,while the reverse rarely
happens. This process restores the balance in the population, thus
maintaining diversity.

The crowding algorithm turns out to be capable of maintaining
multiple solutions, but is of limited use for finding and optimizing
multiple solutions. The main reason for this is the fact that old
individuals are replaced by new ones irrespective of the mutual
fitness values. The only fitness dependent selection is up front
when reproducing individuals are selected. This means that fit
individuals are selected for reproduction, but they typically will
replace similar individuals, which often are similarly fit. This
results in fit individuals replacing fit individuals, thereby reducing
the selection pressure. To deal with this problem, Sedbrook,
Wright and Wright, extended the standard crowding algorithm
by selecting the crowding factor sample from the worst part of
the population [23]. This method, called closest-of-the-worst, only
replaces low fitness individuals, thereby increasing the selection
pressure.

3.1.2. Fitness sharing
Holland introduced the concept of fitness sharing [16]. The

idea behind it is that each niche has an associated total amount
of fitness and individuals occupying the same niche share this
amount. If the number of individuals exceeds the carrying capacity
of a niche, the individuals are better off seeking less crowded
niches. A population is stable if each niche contains a number of
individuals proportional to its total amount of fitness.

Fitness sharing uses a form of frequency-dependent selection.
This means that the fitness of a phenotype depends on its fre-
quency in the population relative to other phenotypes. Phenotypes
that are rare in the population have a fitness advantage,while com-
mon phenotypes have a disadvantage. This mechanism is often
found in nature. Consider, for instance, a predator that can special-
ize in hunting one of two prey types. It is then most advantageous
for the predator to specialize in hunting the most common prey,
thereby reducing the fitness of that prey and giving a fitness ad-
vantage to the rare type. This type ofnegative frequency-dependent
selection results in the balancing of the population and the main-
tenance of diversity.

Sharing is an effective niching method, which is capable of
finding and maintaining multiple solutions. The main drawback is
the computational cost of calculating the niche count; the method
as it is presented above has Θ(n2) complexity. The computational
complexity can be reduced by estimating the niche count from a
fixed sized sample of the population instead of using the entire
population [8]. This results in Θ(k · n) complexity, where k is the
size of the sample. Although this optimization yields good results
for the required amount of computation, it comes with the cost of
losing some of the diversity maintaining powers. This is caused by
the introduction of additional sample variance, which is a source
for extra random genetic drift.

3.1.3. Local selection
The standard genetic algorithm and particle filter have a fixed

population size. As discussed, this is one of the causes of premature
convergence. The above-mentioned niching methods compensate
for this phenomenon in different ways, but keep the population
size fixed. The local-selection algorithm [24], on the other hand, has
a flexible population size. Over time, an individual accumulates

1110 G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118

‘‘fitness’’. The rate of accumulation depends on the individual’s
quality and on the number of nearby other individuals. Based on
the accumulated fitness an individual will reproduce or die. The
absolute threshold, the flexible population size, and the sharing
of fitness among neighboring individuals, eliminate the inherent
competition between individuals of different niches, and therefore
minimize the influence of premature convergence.

Menczer, Degeratu and Street implemented this as the evolu-
tionary local-selection algorithm (ELSA) [24]. We based our algo-
rithm that is described in Section 4.7 on ELSA. It is interesting to
note that similar algorithms are used in the field of individual-
based modeling, for instance in the Sugarscape simulation [25].

Local selection changes the population size dynamically. The
size depends on the carrying capacity of the fitness landscape, as
the number of individuals per solution is proportional to the fitness
of that solution. Besides the diversitymaintenance capabilities, the
method has other useful properties for Monte-Carlo localization.
MCL has to dealwith dynamic fitness landscapes, since the position
of the robot constantly changes. Depending on the complexity
of the situation, more or fewer members in the population are
needed, which is addressed by local selection. Dynamic population
size in Monte-Carlo localization is also studied by Fox [5] using
KLD-sampling.

In contrast with the other mentioned niching methods, local
selection does not select individuals for reproduction by compar-
ing their fitness with the rest of the population in a stochastic se-
lection process. Instead, reproduction and death of an individual
only depend on the individual’s local environment. Individuals sur-
vive as long as the environment is capable of supporting them.
Therefore, this niching method is less prone to random genetic
drift. Furthermore, the algorithm has a computational complexity
of Θ(n). However, since n is adaptive, experiments need to show
whether this really is a computational improvement over the other
niching methods. A disadvantage of local selection is the fact that
additional parameters need to be set in order to control the mag-
nitude of the population size and the birth and death rate.

4. Implementation for Monte-Carlo localization

We have implemented six niching algorithms for Monte-
Carlo localization based on the three niching methods given in
Section 3.1. We first describe the standard particle filters, followed
by the six niching algorithms.

4.1. Algorithm 1: The standard particle filter

Let St = {�xit , wi
t�|i = 1, . . . , n} be the population at time t ,

where xit is the state of particle i andwi
t is the importanceweight of

that particle. At t = 0, the particles are usually uniformly randomly
distributed over the search space with equal importance weights.
Every iteration, the algorithm takes the previous population St−1,
the action performed ut−1 and the observation zt . The basic particle
filter consists of three steps. First, the motion model repositions
the particles. Then, the sensor model determines the weight of the
particles. And finally, the set of particles is resampled, and some
particles are selected for reproduction. In the followingparagraphs,
the implementation of these steps is described in detail. The
pseudo-code the three steps is given in Table 1, and that of the total
particle filter in Table 2.

Motion model. Every time step, the particles are repositioned
based on the action of the robot. Aswe onlywant to investigate the
dynamics of the particle filter, we use a relatively simple model. In
this model, the new position has a mean value equal to the sum of
the old position and the action of the robot. Additional Gaussian
noise is added to the translation and rotation of the robot. This
results in a distribution, P(xt+1|xt , ut), similar to that depicted in
Fig. 2A. The noise in the motion model reflects the expected noise

Table 1
Functions for themotionmodel, the sensormodel and stochastic uniform sampling.

Algorithm: Sample_Motion_Model (ut , xt)

ut =
�
utrans
t , urot

t
�
: robot’s motion

xt = �x, y, α�: position in polar coordinates
1 δtrans ← sample_from(N(utrans

t , σ 2
T))

2 δrot ← sample_from(N(urot
t , σ 2

γ))

3 x̂ ← x + δtrans · cos(α + δrot)
4 ŷ ← y + δtrans · sin(α + δrot)
5 α̂ ← α + δrot
6 return xt+1 =

�
x̂, ŷ, α̂

�

Algorithm: sensor_model (zt , xt)

1 q ← 0
2 z∗

t ← simulate_observation(xt)
3 for all sensors k

4 p ← 1√
2πσ 2

s
e
− 1

2
(zkt −zk∗t)

2

σ2
s

5 q ← q · p
6 end
7 return q

Algorithm: Sample (St ,N)

Stochastic Universal SamplingBaker [1]
St =

�
pit =

�
xit , w

i
t
�
|i = 1, . . . , n

�
: population at time t .

1 St+1 ← ∅
2 i ← 1
3 c ← wi

t
4 r ← rand(0,N−1)
5 for n ← 1 to N
6 while r > c
7 i ← i + 1
8 c ← c + wi

t
9 end
10 St+1 ← St+1 ∪ pi
10 r ← r + N−1

11 end
12 return St+1

Table 2
Pseudocode of the standard particle filter and the additional code for sharing and
frequency-dependent selection.

Algorithm standard particle filter

St = {pit = �xit , wi
t �|i = 1, . . . , n}: population at time t .

xit : position of particle i at time t .
wi

t : weight of particle i at time t .
ut : motion of the robot at time t .
Ξt : observation of the robot at time t .

1 S0 ← randomized_population
2 repeat
3 for all particles i
4 xit+1 ← Sample_Motion_Model (ut , xit)
5 wi

t+1 ← Sensor_Model (zt+1, xit+1)
6 end
7 St+1 ← Sample(St , n)
8 until (finished)

Algorithm sharing — 20%

5.1 wi
t+1 ← wi

t+1/
�20%·n

j=0
1

dist(i, rand_particle)

Algorithm frequency dependent selection — 20%

5.1 wi
t+1 ← wi

t+1 · �20%·n
j=0 dist (i, rand_particle)

Algorithm frequency dependent selection — 1

5.1 wi
t+1 ← wi

t+1 · dist (i, rand_particle)

of the robot’s action. It is, however, important that the motion
model overestimates this noise, so that the particle filter effectively
explores the search space. In the experiments we used standard
deviations of σT = 2 and σγ = 0.2 for translation and rotation
respectively. The next position of the particles is determined by
sampling from the motion distribution (see also Fig. 2B).

G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118 1111

A. The motion model. B. Sampling from the motion model. C. The sensor model.

Fig. 2. Diagram A shows the distribution of the motionmodel p(xt+1|xt , ut). The distribution has a banana shape, caused by the Gaussian distribution on the translation and
rotation of the robot. Diagram B shows 1000 samples of this distribution. The sensor model is shown in diagram C. The probability p(zkt |xt) is defined by a Gaussian function
with the robot’s sensor reading, zkt , as variable, the particle’s reading, zk∗t , as mean and σ 2

s as variance.

Sensor model. The sensor model determines the weight of each
particle by calculating wi

t = P(zt |xit), the likelihood that the robot
makes observation zt at position xit . Using ray tracing in the map,
an estimate is made of the expected value of each sensor k if the
robot were at location xit , z

k∗
t = fRT

�
xit

�
, where fRT is the ray-

tracing function. The weight of each particle is then calculated
by the product of the individual likelihoods, P(zkt |zk∗t), that the
robot’s sensor value zkt resembles the particle’s sensor value zk∗t .
This resemblance is calculated using the density function of the
Gaussian distribution, with zkt as variable, zk∗t as mean and σ 2

s as
the sensor model variance (see Fig. 2C). This results in:

P(zt |xit) =
�

k∈sensors

P(zkt |zk∗t) =
�

k∈sensors

N(zkt ; zk∗t , σ 2
s). (4.1)

The sensor model that we describe here consists of a simple
Gaussian distribution for a sensor hit. Thrun, Burgard and Fox
[3, chapter 5] describe amore elaborate sensormodel which better
models a real distance sensor. This sophisticated sensor model,
however, is unnecessarily complicated for our purposes.

Resampling. Genetic algorithms and particle filters strongly
depend on sampling the population. The loss of diversity is partly
a consequence of the randomness in sampling. Furthermore,
the speed of convergence is proportional to the variance of the
samplingmethod [12]. Therefore,we used a samplingmethodwith
low variance throughout this paper. As a substitute for roulette
wheel selection, which has a relatively high sample variance, we
used stochastic universal selection (SUS), proposed by Baker [1].
SUS differs from ordinary roulette wheel selection in that it does
not choose a random location on the roulette wheel for every
new selection, but initially chooses only one random point on the
roulettewheel, and then selects new samples bymoving thewheel
with fixed-sized steps. Both selection methods have the same
expected values, but the variance of SUS is reduced. The stochastic
universal selection algorithm is given in Table 1. An additional
advantage of SUS is that its complexity for a population of size n is
Θ(n), whereas the complexity of roulettewheel selection isΘ(n2).

The presented motion and sensor model are used in all va-
riants of the Monte-Carlo localization algorithms discussed below.
The presented sampling method is used for resampling in the
standard particle filter, the sharing algorithm and both frequency-
dependent selection algorithms. Furthermore, it is used for fitness
proportional selection in the crowding and closest-of-the-worst
algorithms.

4.2. Algorithm 2: Crowding

Where the standard particle filter uses stochastic universal
sampling for selection and reproduction, the crowding algorithm
uses a rather different approach. After the motion and sensor
models are applied to all particles, only a proportion of the

Table 3
Pseudocode for crowding and the additional code for closest-of-the-worst. In the
experiments, we used gg = 0.2 and cf = 0.01. For the sampling in line 3, we used
stochastic universal sampling.

Crowding

1 S0 ← randomized_population
2 repeat
3 for all particles i
4 xit+1 ← Sample_Motion_Model (ut , xit)
5 wi

t+1 ← Motion_Model (zt+1, xit+1)
6 end
7 Gt ← Sample (St , gg · n)
8 for all particles i in Gt
9 C ← uni_sample (St , size ← cf · n)
10 j ← argmin

k∈C
(dist (i, k))

11 pjt ← pit // replace j by i
12 end
13 until (end)

Closest-of-the-Worst

9 Ŝt ← worst_particles (St , size ← n/3)
9.1 C ← uniform_sample (Ŝt , size ← cf · n)

population is selected for reproduction. A proportion of gg particles
is selected with fitness proportionate selection using SUS. For each
selected particle, a proportion, cf, of the population is uniformly
sampled. The selected particle replaces the particle in the cf -
sample with the shortest distance in Euclidean space. In the
experiments, we used a generation gap of gg = 0.2 and a crowding
factor cf = 0.01. The pseudo-code is given in Table 3.

The complexity of crowding is quadratic, Θ(gg · cf · n2).
However, since gg and cf are small proportions of the population,
it is not very drastic for small population sizes. In practice, the
algorithm was even faster then the standard particle filter for the
maximum population size that we used (n = 2500). This is caused
by the fact that only gg · n copy functions need to be applied every
time step.

4.3. Algorithm 3: Closest-of-the-worst

The closest-of-the-worst algorithm applies more selection
pressure than standard crowding. Instead of a random uniform
selection of the cf -sample over the whole population, the cf -
sample is taken from the worst third of the population. This
increases the complexity of the algorithm, because the population
needs to be sorted on its weights, adding n · log n steps. The
algorithm is given in Table 3.

4.4. Algorithm 4: Sharing

This algorithm is an extension of the standard particle filter.
It introduces the sharing of weights between particles that are

1112 G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118

close together. We base our algorithm on that of Goldberg and
Richardson [8], who implemented fitness sharing by calculating
the shared fitness, ŵi

t , of individual i at time t , as the normal fitness
value, wi

t , divided by the niche count:

ŵi
t = wi

t
n�

j=1
s (d(i, j))

(4.2)

where d(i, j) is the Euclidean distance between particle i and j. The
niche count is the sum of all sharing function values, s(d), between
individual i and all nmembers of the population.

In the original sharing algorithm [8], a parameter defining the
niche radius, r , is used. Inspection of the algorithm on some pilot
experiments showed the best result with high values of r . With
a small radius, many irrelevant clusters appear. Moreover, it is
desirable to reduce the number of free parameters in the models.
We therefore decided to eliminate the niche radius and let the
particles share their weightswith all other particles, butmorewith
nearby particle and less with distant particles. This results in the
following sharing function:

s(d(i, j)) = 1
d(i, j)

. (4.3)

Originally, the weight of particle i is adjusted by dividing it by
the sum of s(d(i, j)) over all particles j in the population. To reduce
the computational costs, we choose to calculate the niche count
by summation over a fraction χ of randomly selected particles,
instead of over all particles:

ŵi
t = wi

t
χ ·n�
j=0

s (d (i, rand(0, n)))
(4.4)

wherewi
t and ŵi

t are, respectively, the weight and adjusted weight
of particle i at time t . In our experiments, we used χ = 0.2.
Although this reduces the computational demands, the complexity
is still quadratic, Θ(χ · n2). Table 2 shows the code for sharing in
addition to the standard particle filter.

4.5. Algorithm 5: Frequency-dependent selection

The rationale behind frequency-dependent selection is that
infrequent particles have a fitness advantage, whereas frequent
particles do not have this advantage. Sharing, as described above,
is a possible implementation of frequency-dependent selection.
However, it can also be implemented differently. Instead of
dividing a weight i by the niche count, the weight can be
recalculated bymultiplying it with the distance from i to the rest of
the population. Like in the sharing algorithm,weused thedistances
towards a fraction χ of randomly selected particles to reduce the
amount of computation.We usedχ = 0.2 in our experiments. This
gives:

ŵi
t = wi

t ·
χ ·n�

j=0

d (i, rand(0, n)) . (4.5)

The complexity of the algorithm, like in sharing, remains qua-
dratic, Θ(χ · n2). The code for frequency-dependent selection is
given in Table 2.

4.6. Algorithm 6: Frequency-dependent selection, sample size = 1

In the previous algorithm, the frequency of a particle is dete-
rmined by taking 20% of the population into account. Although
this reduces the amount of computation, the algorithm still has a
quadratic complexity. To reduce the complexity to Θ(n), we need
tomeasure frequency by sampling a fixed size from the population.
In this algorithm, we chose to have a sample size of one particle.

Table 4
Pseudo code for the local-selection algorithm. In the experiments, θ was the variable
and Eout = 0.2 · θ . The used value of Eout was derived from a number of pilot
experiments.

Local selection

St = {pit = �xit , Ei
t �|i = 1, . . . , n}: population at time t .

Ei
t : energy of particle i at time t .

S0 ← randomized_population
for all particles i

Ei
t ← θ

repeat
for all particles i

xit+1 ← Sample_Motion_Model(ut , xit)
wi

t+1 ← Motion_Model(zt+1, xit+1)
bi ← get_world_bin(i)
wbin[bi] ← wbin[bi] + 1

end
for all particles i

Ein ← wi
t+1/wbin[bi]

Ei
t+1 ← Ei

t+1 + (Ein − Eout)
if (Ei

t+1 > θ)

î ← copy(i)
Ei
t+1 ← Eî

t+1 ← Ei
t+1/2

St+1 ← St+1 ∪ {pit+1, p
î
t+1}

else if (Ei
t+1 > 0)

St+1 ← St+1 ∪ pit+1
else

// particle i dies
end

end
until (finished)

This means that the weight of the particles is multiplied by the
distance towards one randomly selected particle. The algorithm is
described in Table 2.

We should mention that a larger sample size is expected to
perform better. However, as it is not our aim to find the best
tradeoff between accuracy and computation, we choose to show
the simplest possible solution for frequency-dependent selection.
The sharing algorithm could be adjusted in a similar way to also
have a sample size of one. Although this has not been tested, one
can expect a similar change in performance.

4.7. Algorithm 7: Local selection

Local selection has a different method to fight premature con-
vergence. Instead of compensating for the inherent competition
between different niches as is done by Algorithms 2–6, local
selection adapts the population size. This removes the inherent
competition for resources between different niches, and lets re-
production and death depend only on the carrying capacity of the
environment. The pseudo code of local selection for Monte-Carlo
localization is given in Table 4.

As is necessary for local selection, the world is divided into bins
to count the number of particles in a local area. These bins are of
size 2 by 2 by 36◦ (the total environment is 150 × 150 × 360◦).
The algorithm works in two sweeps through the population. In
the first sweep, the motion and sensor model are applied to all
particles. At the same time, the bins are filled. In the second sweep,
the energy of particles is calculated. The accumulated energy, Ei

t ,
is increased by Ein, which is the weight of the particle divided by
the bin count. The accumulated energy is furthermore decreased
by a fixed amount, Eout . Depending on the energy of a particle, it
either reproduces (if Ei

t > θ), dies (if Ei
t < 0) or continues living

(otherwise). If the particle reproduces, an exact copy is added to the
population. Both particles share the fitness of the parent. θ and Eout
together influence the population size. The rate of generating new
individuals, is set by θ . Eout controls the ratewithwhich individuals
die. The complexity of the algorithm is linear in the number of

G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118 1113

particlesΘ(n), but two sweeps through the particle population are
needed, one for filling the world bins and one for reproduction.

We changed the original ELSA algorithm [24] with respect to
two points. First, Menczer et al. propose to use a fixed amount
of energy that enters the environment every time step. This
fills an energy reservoir. If the reservoir is empty, the members
of the population cannot accumulate more energy. This energy
replenishment sets a maximum size to the population. However,
we would like the maximum population size to emerge from
the fitness landscape. We therefore omit the limited energy
replenishment. Note that this does not mean that the population
size can grow indefinitely. Second, we supply the members of the
initial population with θ (the threshold for reproduction) energy
instead of half of this amount, as used in [24]. The reason for this
is that it gives the initial population a bit more time to explore
the environment. If a particle does not gain any energy itself, it
will die in 1

2θ/Eout time steps in the original algorithm. With our
settings, this result in a life expectancy of 2.5 time steps. This gives
the particles too little time to explore the environment, thereby
increasing the probability that none of the particles near a potential
robot position finds this position before it ‘‘starves’’. An initial life
expectancy twice as big yields better results.

After some initial experimental runs, it turned out that the
best results were achieved when Eout depended on θ . We had
good results with Eout = 0.2 · θ . A smaller fraction results in
too many particles, which makes it infeasible to achieve real-
timeperformance. Higher fractions cause the particles to disappear
quickly, resulting in a population that is too small. Altogether, this
results in an algorithm with θ as the only variable to control the
population size.

5. Experiments

We tested the niching methods using a robotic simulation, in
order to createwell-controlled experiments and be able to focus on
the nichingmethods. A path to an implementation on real robots is
given in Section 7.1. Different experiments were conducted to test
the diversity maintenance, compactness, and estimation accuracy
of the methods.

5.1. The robotic simulation

The map we used for the experiments has square symmetry
(see Fig. 3). In this symmetric environment there are always four
ambiguous situations for the robot. The size of the map is 150 by
150. The robot in the simulation has 16 distance sensors, whose
values are determined by ray tracing in the map, with a maximum
distance of 20. Gaussian noise is added to the sensor readings with
standard deviation of 1.0. Furthermore, the robot has differential
drive, with which it can navigate through the environment.
The robot provides odometry information, consisting of the
translational and rotational speed of the robot measured in units
per time step and radians per time step respectively. There is
Gaussian noise on the odometry, with standard deviation of
1.0 and 0.04 respectively. The robot is controlled by a simple
obstacle avoidance behavior, similar to Braitenberg Vehicle 3b, the
‘‘Explorer’’ [26]. The default translational speed is 8 units per time
step.

5.2. Experimental setup

5.2.1. Diversity maintenance
The goal of the experiments is to show that solutions for

premature convergence in genetic algorithms can successfully be
applied to Monte-Carlo localization. Moreover, we would like to

Fig. 3. The map with square symmetry used in the experiments.

Table 5
The carrying capacity using the local-selection algorithmwith different values of θ .

θ 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35

n 232 333 499 725 959 1277 1675 2236

measure the performance of the niching algorithms in terms of
their ability to maintain diversity. This ability is measured by the
number of time steps (with a maximum of 500) over which they
maintain all four possible solutions. The performance is measured
as a function of the number of hypotheses. For Algorithms 1–6,
the performance is measured for 100, 200, 500, 1000, 1500,
2000 and 2500 particles. For Algorithm 7, the situation is a bit
more complicated, since the population size is not constant. It is,
however, possible to control the population size by the threshold
θ , as discussed in Section 4.2. To test the carrying capacity for
different thresholds, we ran experiments with large numbers of
initial particles. The reason to use a large number of initial particles
is that the carrying capacity is strongly influenced if one of the
possible solutions is not covered in the initial phase. The carrying
capacities for different thresholds are given in Table 5. In the main
experiments, we used these thresholds, and an initial number of
particles equal to the associated carrying capacity.

We consider that a solution is maintained by the particle
filter if at least one particle is in its vicinity, where vicinity is
defined as a sphere with radius 10 centered on the location
and orientation of that solution, as calculated using the real
position of the simulated robot. To be able to compare location
and orientation, a difference of 180◦ in orientation is considered
commensurate to a distance in location of 50. Two performance
measures are used: the percentage of successful runs, and the
time to premature convergence. A successful run is a run where
the particle population maintains all four ambiguous solutions
throughout the whole period of a run (500 cycles). The time to
premature convergence is the time, measured in cycles, when the
particle filter loses one ormore of the four potential solutions. Each
run is terminated after 500 cycles. If no premature convergence has
occurred, the time to convergence is set to 500. A total of 100 runs
is used to test all algorithms for each population size. To estimate
variation in the percentage of successful runs, the 100 runs are split
up in 10 chunks of 10 runs, over which the variance is calculated.

5.2.2. Compactness of the particle subpopulations
Besides the performance measures for diversity preservation,

we measured the compactness of the particle subpopulations.
The compactness is an interesting measure, since it tells us
something about the uncertainty of the niching methods. A higher
compactness of a subpopulation relates to a lower uncertainty. The

1114 G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118

Fig. 4. The non-ambiguous map used in experiments C.

preferred compactness is that which best reflects the positioning
uncertainty considering the sensory and odometric noise of the
robot. Since this is well estimated by the standard particle filter,
we will take its compactness as the baseline. The niching methods
should not result in particle populations that are too incompact.
Consider for instance a niching method that would simply
uniformly place particles on themap. Thatmethodwouldmaintain
all possible solutions, but its total lack of compactness wouldmake
it impossible to correctly estimate the robot’s position. Neither
should it result in too compact populations, since that would
reduce the noise robustness of the filter. We used two measures
for compactness. First, the proportion of all particles that are
within the vicinity, ρ = 10, of the four optima. The distance
from each particle to the nearest optimum is calculated by the
Euclidean distance in three dimensions, the x- and y-values of
the location as well as the orientation. The proportion of particles
within the vicinity gives a measure of the compactness of the
subpopulations. The second measure is the mean sum of squared
errors (MSSE), where the error is taken as the distance towards the
nearest optimum. This gives the variance of the particles in the
subpopulations, which is inversely related to the compactness of
the subpopulations.

5.2.3. Estimation accuracy
Finally, we tested the different niching methods on their

accuracy in estimating the robot’s position. Although this research
focuses on the ability of the different algorithms to maintain
diversity, this should not conflict with the power to correctly
estimate the position of the robot. We tested the estimation
performance on the symmetrical map that is used in the previous
experiments, as well as on a non-symmetrical map (see Fig. 4).
The latter does not provide any long-lasting ambiguous situations
for the robot. To estimate the position of the robot, we used a
kernel-density estimation [27]. The error is then measured by the
distance from the estimation to the nearest of the four possible
robot positions in the symmetrical map. In the non-symmetrical
map, the error is the distance from the estimation to the robot’s
position. Thismethod estimates the position of the robot by finding
the highest density of particles.

6. Results

6.1. Diversity maintenance

The results of the experiments are shown in Fig. 5. (A) shows
the percentage of successful runs plotted against the number of
particles. (B) gives the time to convergence plotted against the
number of particles. The error bars show the 95% confidence

intervals. All graphs in both plots show an increase in performance
with the number of hypotheses. This is expected, since the time
to premature convergence is extended with larger population size.
For small numbers of hypotheses, all algorithms perform badly.
This reflects the fact that there needs to be a minimal number of
particles to find and maintain the four optima. This is especially
acute in the initial phase, when all particles are randomly placed
on themap and enough particlesmust be present such that at least
one particle is near each optimum.

As can be seen in both plots, the diversity preserving ability
of the standard particle filter is very limited. Even for 2500
particles, the algorithm is successful in maintaining the diversity
in only 6% of the runs, with an average time to convergence
of 183 cycles. Even the simplest and computationally cheapest
nichingmethod, frequency-dependent selectionwith a sample size
of 1, significantly outperforms the standard algorithm. However,
this algorithm does not achieve more than 37% success on
average, with a time to convergence of 303 cycles for the
maximum population size. The two sharing algorithms with equal
complexity, standard sharing and frequency-dependent selection,
both with a sample size of 20%, perform equally well. Their
performance in maintaining diversity is similar to that of local
selection. Among these three algorithms, no significant differences
are found.With themaximumpopulation size, the algorithms have
an average success of 96%, 97% and 92% and a time to convergence
of 480, 485 and 461 cycles respectively. It must be kept in mind
that the maximum population size of local selection is on average
2258 in contrast with 2500 for all other niching methods. The
best performing algorithms are the two crowding algorithms,
standard crowding and closest-of-the-worst. For population sizes
of 1000 particles and more, both algorithms outperform the other
algorithms. Both algorithms show a significant difference, using
the t-test with p < 0.05, with all other algorithms for 1500
particles. With more particles, the performance is not significantly
better than the other algorithms, but this is caused by the fact
that the performance is close to what is maximally possible, which
inherently flattens the curves. The difference would remain if a
larger maximal number of runs was chosen. In the case of 2500
particles, both algorithms have a perfect score. In 100% of the runs,
the diversity is maintained over all 500 cycles.

Local selection has the best performance in maintaining diver-
sity of all algorithms with linear complexity. Its performance is
comparable to that of standard sharing and frequency-dependent
selection with 20% sample size, which both have quadratic
complexity.

6.2. Compactness of the particle subpopulations

Fig. 6 reveals that the two sharing algorithms, standard sharing
and frequency-dependent selection,with a sample size of 20% have
a different compactness of the subpopulations. Both measures of
compactness show that the subpopulations aremore compactwith
frequency-dependent selection than with standard sharing. The
compactness with frequency-dependent selection is similar to the
standard particle filter, whereas sharing results in significantly less
compact subpopulations. The difference in compactness can be
explained by the difference between Eq. (4.5), used by frequency-
dependent selection, and (4.4), used by sharing. The latter demotes
particles that are close to other particlesmore than the former. This
results in less compact particle populations.

The diversity maintenance of local selection was similar to that
of sharing and frequency-dependent selection. The compactness of
its subpopulations is also similar to that of sharing, but worse than
that of frequency-dependent selection.

Fig. 6B reveals a problem that both crowding algorithms have.
The MSSE of both standard crowding and closest-of-the-worst

G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118 1115

A B

Fig. 5. (A) The percentage of runs without convergence plotted against the number of hypotheses. The error bars give the 95% confidence intervals. Means and confidences
are calculated from 10 sets of 10 runs. The number of hypotheses for the local-selection algorithm is variable and depends on θ . (B) The time to convergence as a function
of the population size. A run is considered converged if one or more of the four optima are lost. The run has a maximum length of 500 cycles. Non-converged runs receive a
time to convergence of 500. The error bars give the 95% confidence intervals. The data comes from a total of 100 runs.

A B

Fig. 6. Compactness of the particle subpopulations. Experiments are performed with 2500 particles, and θ = 0.35 for local selection. (A) Proportion of particles that is
within the radius ρ = 10 of the four possible solutions. This is a measure of the compactness of a subpopulation. After an initial phase, the graphs show periodic behavior.
This is a result of the shape of the robot’s environment. When the robot approaches a corner, the subpopulations get more compact, while they expand in the corridors.
(B) The mean sum of squared errors (MSSE). This shows the variance within a subpopulation and is inversely proportional to the compactness of the population. The two
crowding algorithms show a constant increase in the MSSE. The other algorithms remain stable after the initial phase.

constantly increases. This phenomenon is caused by the fact that
a proportion of the population is not selected for replacement.
Particles that reproduce replace similar particles, which are
nearby. Particles that are far from successful particles therefore
have a high probability of remaining in the population. This results
in a fixed proportion of ‘free’ particles that follow a random walk
through the environment. Sincewehavenot bounded thepositions
of the particles, we see a constantly increasing MSSE. Adding more
selection pressure as is done in closest-of-the-worst reduces the
number of such particles, but the problem remains. Additional
techniques providingmore selection pressure need to be applied to
prevent or solve this phenomenon. Alternatively, the free particles
could be detected and subsequently repositioned close to more
successful particles.

6.3. Estimation accuracy

Fig. 7 shows the accuracy of all algorithms for both the ambi-
guous environment, (A), and a non-ambiguous environment, (B).

The error is plotted relative to the expected error of a random
estimation for both environments. In Fig. 7A, we see that the
estimation with the standard particle filter is most accurate.
Although this measure does not say anything about the diversity
maintenance, it illustrates the good properties of the standard
algorithm for Monte-Carlo localization. When performing a stan-
dard t-test, all niching methods, except the frequency-dependent
selection with a sample size of 20%, show a significantly worse
result (with p-values � 0.01). This loss of accuracy can be ex-
plained by the fact that less particles represent one solution,
causing larger errors in the kernel density estimation. However,
the overall performance in estimating the robot’s position of all
algorithms can be considered good.

In Fig. 7B, the results are shown for the non-ambiguous
environment. Again, the performance of the standard particle
filter is best and similar to its performance in the ambiguous
environment. For the niching methods, we see a slight decrease in
accuracy and an increase in variance. This decrease in performance
canbe explainedby the fact that thenichingmethods, in contrast to
the standard particle filter, oftenmaintain a second particle cluster

1116 G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118

A B

Fig. 7. The estimation error, using kernel density estimation, of the different algorithms. The error is relative to the expected error with a random estimation. Experiments
are performed with 2500 particles. For local selection, θ = 0.35. The figure shows standard box-and-whisker plots. On the horizontal axis, the algorithms are ordered by
their median error. (A) shows the estimation error in the ambiguous environment. (B) shows the estimation error in a non-ambiguous environment. The numbers above the
boxes show the number of successful runs. An unsuccessful run is a run where there are less than 10 particles within the vicinity of the robot (ρ = 10) over an extended
period of time. All unsuccessful runs are caused by the fact that, by chance, the position of the robot is not covered by the random initialization of particles. Since this is an
initialization problem, and not an estimation problem, only successful runs are considered in the error estimation.

in a local maximum. These ‘ghost clusters’ usually have a smaller
population size and do not follow the same trajectory as the robot.
However, every now and then, these ghost clusters have a higher
density of particles than the main cluster, which causes the kernel
density estimation method to incorrectly estimate the position of
the robot.

Especially the change in performance of frequency-dependent
selection with a sample size of 20% is remarkable. Where it
performed among the best in the ambiguous environment, it
performs worst in the non-ambiguous environment. The reason is
that, more often than with the other algorithms, the ghost cluster
contains the highest density of particles. Because of the nature
of the algorithm, the particle populations, including the ghost
clusters, are very compact. This increases the probability on an
incorrect estimation.

Another notable result is the number of successful runs of
the local-selection algorithm (see Fig. 7B). A run is considered
unsuccessful when there are fewer than 10 particles within the
vicinity of the robot (ρ = 10) over an extended period of time
(>250 cycles). All unsuccessful runs are the result of a failure to
place particles near the robot’s position in the initial phase. Local
selection is especially vulnerable to this, because particles ‘die’ if
their fitness is low. In the other algorithms, the particle population
is fixed and the particles are able to recover the position of the
robot, but with local selection, quickly there are no particles left
to recover. Although this might seem a huge disadvantage of local
selection, it can be avoided quite easily by increasing the initial
amount of energy for each particle. Moreover, in the cases where
the initial phase was successful, local selection results in good
estimation accuracy.

The fact that all the runs of all methods in the ambiguous
environment are successful can be explained by the form of
the fitness landscape. In the ambiguous environment, the fitness
landscape is quite broad. There are more possible solutions and
there is a broad and gradual increase in fitness towards the
maxima, which can be used by the hill-climbing properties of
the particle filter. The fitness landscape of the non-ambiguous
environment, on the other hand, is much spikier, and the
maximum is therefore harder to find. Apart from the problem
with unsuccessful runs, local selection shows a good accuracy in

estimating the robot’s position. Overall, all niching methods show
a good, and by far better than random, performance in estimation.

7. Discussion

In this paper, we discussed the problem of premature conver-
gence in particle filters, andwe demonstrated the successful trans-
fer of a number of niching methods originally from the domain of
genetic algorithms to tackle the problem. We applied the meth-
ods for maintaining diversity in the particle population to Monte-
Carlo robot localization in symmetric environments that provide
ambiguous situations.

All niching methods that we used show a significantly bet-
ter performance in maintaining diversity than the standard par-
ticle filter. The two crowding algorithms, standard crowding and
closest-of-the-worst, have the best performance, despite their
problems with optimization, reported in the genetic algorithms
literature [22,28]. Further research needs to be done to see how
the crowding algorithms perform in larger and more complex
environments. Addingmore selection pressurewith the closest-of-
the-worst algorithm does not yield an improvement in the diver-
sity preserving performance, but does improve the compactness.
Despite the problem of ‘free’ particles that both algorithms have,
their accuracy in estimating the robot’s position is good, with
closest-of-the-worst outperforming standard crowding.

Local selection is the best performing algorithm with linear
complexity. Its method for reproduction is very different from
the other algorithms and involves a dynamic population size.
The number of particles adapts to the carrying capacity of the
environment. Since in robot localization the complexity constantly
changes, a dynamic population size is a useful property for Monte-
Carlo localization (e.g., [5]). Furthermore, local selection has the
useful property that it can be applied to environments differing
in size without adjusting the parameters, whereas for all other
implementations of the particle filter the number of particles needs
to be set. The three important properties of local selection, its
linear complexity, its good diversity preserving capabilities, and
the adaptation to the complexity of the environment, suggest
that the algorithm is very suitable for Monte-Carlo localization.

G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118 1117

We therefore believe that it is useful to further investigate this
algorithm and test its performance in different and more complex
environments, as well as to compare it to KLD-sampling [5].

The sharing algorithms, standard sharing and frequency-
dependent selection, are very simple variations on the standard
particle filter that yield good diversity preserving performance.
Frequency-dependent selection results in more compact subpop-
ulations, which makes for more accurate estimation of the robot’s
position in the ambiguous environment, but causes more prob-
lems with ghost clusters in the non-ambiguous environment. Our
experiments show that diversity preserving performance depends
strongly on the sample size. We tested sample sizes of 1 particle
and 20% of the population. The latter results in significantly better
performance, butmakes the complexity of the algorithm quadratic
in the number of hypotheses.

For Monte-Carlo localization, and particle filters in general, a
sufficient number of particles in the initial phase is crucial for
finding all optima.With small population sizes, the probability that
there are no particles near one of the potential solutions is large. If
this happens, the particle filter will never be able to recover that
solution. This is especially problematic for local selection, since
it may result in the annihilation of the particle population. It is
therefore necessary to start with a very large number of particles,
and for local selection, with a high initial energy of the particles.
After the initial phase, which usually lasts for a small number of
time steps, the number of particles can be reduced. Local selection
already does this automatically. The other methods would have to
be modified slightly to incorporate this.

Because of the diversity preserving forces in the niching
methods, they produce different clusters, even when there is no
ambiguous situation. The so-called ghost clusters that are formed
fill a local maximum in the fitness landscape. Although the ghost
clusters sometimes cause incorrect localization in our experiment,
this can quite easily be avoided with additional techniques. The
position of the ghost cluster does not change in accordance with
the odometry information of the robot and can therefore be easily
classified as incorrect.

7.1. The path to implementation

In this paper, we used a simulated robot to analyze the dynam-
ics of the niching methods. We decided to use a simulation in or-
der to create the best controlled experiments possible, and thus
make the fairest comparison between methods. Exactly symmet-
rical situations that, in addition, are constant over time are hard to
recreate in the real world. This does not mean that our results are
only applicable to such artificial situations. On the contrary, they
are very relevant for robot navigation in the real world. Particle
filters are increasingly used in robot navigation (e.g., [29–31]), and
many realworld environments create ambiguous situations for the
robot. Consider for instance an office buildingwithmany identical-
looking offices or a building with large open spaces (or unreflec-
tive walls) where distance sensors do not return a reading. Such
situations also cause premature convergence in particle filters on
real robots. Themethods investigated in this paper are expected to
work as well in the real world as they work in simulation. After all,
the dynamics of a particle filter do not depend on the source of the
input.

The implementation of the niching methods on a real-world
application is straightforward. Only the motion and sensor models
need to be adjusted to better model the actuators and sensors of a
real robot. We refer to [3] for a description of a motion and sensor
model for a mobile robot. The rest of the particle filter and the
applied niching methods can be used exactly as in their presented
form.

7.2. Conclusion

Our research demonstrated the applicability of a number of
niching methods that are well-known in genetic algorithms, to
solve the problem of premature convergence in particle filters.
Not only does this paper contribute to an improvement of
particle filters in symmetric environments, it also demonstrates
the possibility of transferring knowledge between the fields of
genetic algorithms and particle filters. We discussed that both
algorithms are, in their essence, identical. They are both based on
variation, selection and reproduction. This similarity causes similar
problems for both algorithms, and these can be solved by using
similar techniques. Besides the examples we gave in this paper,
there might well be other techniques that are worth sharing. We
hope this paper will kick off the search for, and the application of,
techniques shared between genetic algorithms and particle filters.

References

[1] J.E. Baker, Reducing bias and inefficiency in the selection algorithm, in: Genetic
Algorithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, 1987, pp. 14–21.

[2] A. Howard, N. Roy, The robotics data set repository (Radish), 2003.
http://radish.sourceforge.net/.

[3] S. Thrun,W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, Cambridge, MA,
2005.

[4] A. Bienvenue, M. Joannides, J. Berard, E. Fontenas, O. Francois, Niching in
Monte Carlo filtering algorithms, in Proceedings of 5th Int. Conf. on Artificial
Evolution. Creusot, 2001, pp. 19–30.

[5] D. Fox, Adapting the sample size in particle filters through KLD-sampling,
International Journal of Robotics Research 22 (2003) 985–1003.

[6] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.
[7] K.A. de Jong, An analysis of the behavior of a class of genetic adaptive systems,

University of Michigan, 1975.
[8] D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal

function optimization, in: Proceedings of the Second International Conference
on Genetic Algorithms and their Application, Cambridge, MA, United States,
1987, pp. 41–49.

[9] T. Higuchi, Monte Carlo filter using the genetic algorithm operators, Journal of
Statistical Computation and Simulation 59 (1997) 1–23.

[10] P.D. Moral, A. Guionnet, On the stability of interacting processes with
applications to filtering and genetic algorithms, Annales de l’Institut Henri
Poincaré 37 (2001) 155–194.

[11] N.M. Kwok, W. Zhou, G. Dissanayake, G. Fang, Evolutionary particle filter: Re-
sampling from the genetic algorithm perspective, in: IEEE/RSK International
Conference on Intelligent Robots and Systems, IROS 05, Edmonton, Canada,
2005.

[12] S.W. Mahfoud, Niching methods for genetic algorithms, Department of
General Engineering, vol. Ph.D., University of Illinois, 1995.

[13] N. Metropolis, S. Ulam, The Monte Carlo method, Journal of the American
Statistical Association 44 (1949) 335–341.

[14] R. Lande, Natural selection and random genetic drift in phenotypic evolution,
Evolution 30 (1976) 314–334.

[15] A. Doucet, J.F.G. de Freitas, N.J. Gordon (Eds.), Sequential Monte CarloMethods
in Practice, Springer Verlag, New York, 2001.

[16] J.H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.

[17] I. Rechenberg, Evolutionsstrategie. Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution, Frommann-Holzboog, Stuttgart, 1973.

[18] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

[19] D.L. Hartl, A.G. Clark, Principles of Population Genetics, second ed., Sinauer
Associates, Inc., Sunderland, Mass., 1989.

[20] T. Higuchi, Genetic Algorithm andMonte Carlo Filter (in Japanese with English
Abstract), in: Proceedings of the Institute of Statistical Mathematics, vol. 44,
1996, pp. 19–30.

[21] P.D. Moral, L. Kallel, J. Rowe, Modeling genetic algorithms with interacting
particle systems, in: L. Kallel, B. Naudts, A. Rogers (Eds.), Natural Computing
Series: Theoretical Aspects of Evolutionary Computing, Springer-Verlag,
Berlin, 2001, pp. 10–67.

[22] K. Deb, D.E. Goldberg, An investigation of niche and species formation in
genetic function optimization, in: Proceedings of the Third International
Conference on Genetic Algorithms, 1989, pp. 42–50.

[23] T.A. Sedbrook, H. Wright, R. Wright, Application of a genetic classifier for
patient triage, in: Proceedings of the Fourth International Conference on
Genetic Algorithms, 1991, pp. 334–338.

[24] F. Menczer, M. Degeratu, W.N. Street, Efficient and scalable pareto optimiza-
tion by evolutionary local selection algorithms, Evolutionary Computation 8
(2000) 223–247.

http://radish.sourceforge.net/

1118 G. Kootstra, B. de Boer / Robotics and Autonomous Systems 57 (2009) 1107–1118

[25] J.M. Epstein, R. Axtell, Growing Artificial Societies: Social Science from the
Bottom Up, Brookings Institution Press, Washington, DC, 1996.

[26] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT Press,
1984.

[27] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed., Wiley
Interscience, 2000.

[28] S.W. Mahfoud, Crowding and preselection revisited, in: R. Männer, B. Mander-
ick (Eds.), Parallel Problem Solving from Nature, vol. 2, Elsevier, Amsterdam,
1992, pp. 27–36.

[29] S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust Monte Carlo localization for
mobile robots, Artificial Intelligence 128 (2001) 99–141.

[30] N. Vlassis, B. Terwijn, B. Krose, Auxiliary particle filter robot localization
from high-dimensional sensor observations, in: W.R. Hamel, A.A. Maciejewski
(Eds.), Proceedings of IEEE International Conference on Robotics and
Automation, Washington DC, USA, 2002, pp. 7–12.

[31] J. Wolf, W. Burgard, H. Burkhardt, Robust vision-based localization for mobile
robots using an image retrieval system based on invariant features, in:
Proceedings of IEEE International Conference on Robotics and Automation,
ICRA, vol. 1, 2002, pp. 359–365.

[32] A. Milstein, J.N. Sánchez, E.T. Williamson, Robust global localization using
clustered particle filtering, in: Eighteenth National Conference on Artificial
Intelligence. Edmonton, Alberta, Canada, 2002, pp. 581–586.

Gert Kootstra is a Ph.D. student at the Artificial Intelli-
gence institute of the University of Groningen. He received
his M.Sc. in Artificial Intelligence in 2001 from the Uni-
versity of Groningen. His graduation research was con-
ducted at the AI-lab of Rolf Pfeifer at the University of
Zurich on the topic of visual landmark navigation. From
2001 to 2005, Gert was a junior lecturer in Robotics and
Autonomous Systems. His current research interests are
in robotic navigation, simultaneous localization and map-
ping and visual perception.

Bart de Boer has a M.Sc. in Computer Science. He received
his Ph.D. in Artificial Intelligence from the University of
Brussels, with Luc Steels as promoter. From 2003 to 2007,
he was assistant professor in Cognitive Robotics at the
University of Groningen. Bart received a prestigious VIDI
grant from the Netherlands Organization for Scientific
Research in 2007. He is currently at the Amsterdam
Centre of Language and Communication at the University
of Amsterdam, where he is working on modeling the
evolution of speech and language.

	Tackling the premature convergence problem in Monte-Carlo localization
	Introduction
	Particle filters and genetic algorithms
	Premature convergence and solutions
	Niching methods
	Crowding
	Fitness sharing
	Local selection

	Implementation for Monte-Carlo localization
	Algorithm 1: The standard particle filter
	Algorithm 2: Crowding
	Algorithm 3: Closest-of-the-worst
	Algorithm 4: Sharing
	Algorithm 5: Frequency-dependent selection
	Algorithm 6: Frequency-dependent selection, sample size = 1
	Algorithm 7: Local selection

	Experiments
	The robotic simulation
	Experimental setup
	Diversity maintenance
	Compactness of the particle subpopulations
	Estimation accuracy

	Results
	Diversity maintenance
	Compactness of the particle subpopulations
	Estimation accuracy

	Discussion
	The path to implementation
	Conclusion

	References

