
Exercise 2: Simultaneous Localization and
Mapping using the Extended Kalman Filter

August 11, 2010

1 Introduction

One important aspect of robotic navigation is the ability to fuse multiple sources of
data. In the case of a mobile robot, we might have a number of sensors telling us our
current position. Each of these sensors is subject to noise and errors of various kinds.
Some sources of position data, such as triangulated range and bearing observations to
known targets, are often quite noisy and subject to short term errors. Other position
information, such as odometry, is subject to an accumulation of errors that result from
inaccuracies in our model and noise on the control lines. The fusion of these two
sources of data can, however, give us much better results since one is good over the long
term while the other is fairly reliable for predicting our position over a short distance.

In this exercise, you will implement the Extended Kalman Filter (EKF) for Simultane-
ous Localization and Mapping in Matlab. Large parts of the code are provided, but you
need to implement parts of the transition model (also termed prediction step) and the
sensor model.

The position of the robot and the landmarks in the map are contained in the state vector:

xk =


xvk
m1

. . .
mn

 (1)

where xvk is the current vehicle state we are estimating in the prediction stage. mi is
the position of landmark i in the map. For clarity xvk can be decomposed as:

xvk = {xvk , yvk , ψvk}T (2)

where xvk and yvk are the x- and y-position of the robot and ψvk is the orientation of
the robot.

1

1.1 Prediction Stage

In the prediction stage we will use a simple bicycle vehicle model which appears in
Figure 1. Vehicle control signals consist of a velocity and a steering angle that can be
retrieved from the robot. The vehicle model and update equations are included here for
your implementation in the code.

The state vector in this step looks like:

xk =


xvk
m1

. . .
mn

 (3)

In the prediction step we want to update the position of the robot in the state vector and
the uncertainties in the covariance matrix. The position of the robot is updated using
the wheel direction and the velocity of the robot:

xvk =

 xvk
yvk
ψvk

 = fv(xvk−1
,uk) =

 xvk−1
+ Vk∆T cos(ψvk−1

+ γk)
yvk−1

+ Vk∆T sin(ψvk−1
+ γk)

ψvk−1
+ Vk∆T

B sin(γk)

 (4)

where xvk−1
, yvk−1

are the xy position of the robot at time k − 1 and where Vk is the
velocity control input and γk is the steering angle input and B is the wheel base of the
vehicle and ψvk−1

is orientation from the current head of the SLAM state vector.

In the matlab code you will work with, the state vector is contained in the vector x. The
robot’s xy and angle position are in x(1:3). The other elements in the array contain
the landmark positions.

Besides updating the position of the robot in the state vector. We also want to update
the uncertainty of the estimated position of the robot and the estimated positions of the
landmarks. These uncertainties are stored in a covariance matrix. In matlab code, the
covariance matrix PX is updated as follows:

PX(1:3,1:3)= Gv*PX(1:3,1:3)*Gv’ + Gu*Q*Gu’;
if size(PX,1)>3

PX(1:3,4:end)= Gv*PX(1:3,4:end);
PX(4:end,1:3)= PX(1:3,4:end)’;

end

In the first line, the uncertainty of the robot’s xy-position and orientation is updated.
In the next four lines, the uncertainty of the relation between the robot and all the
landmarks in the map are updated.

To calculate these updates, we need the Jacobians Gu andGv for our robot model. The
Jacobians are as follows:

2

Vehicle Motion ModelVehicle Motion Model

• Ackerman
steeredsteered
vehicles:
Bicycle modelBicycle model

• Discrete time
model:model:

SLAMTim Bailey 15

Figure 1: Vehicle Motion Model

Gv =

 1 0 −Vk∆T sin(ψvk−1
+ γk)

0 1 Vk∆T cos(ψvk−1
+ γk)

0 0 1

 (5)

Gu =

 ∆T cos(ψvk−1
+ γk) −Vk∆T sin(ψvk−1

+ γk)
∆T sin(ψvk−1

+ γk) Vk∆T cos(ψvk−1
+ γk)

∆T sin(γk)
B

Vk∆T cos(γk)
B

 (6)

where Vk is the velocity control input and γk is the steering angle input and B is the
wheel base of the vehicle and ψvk−1

is orientation from the current head of the SLAM
state vector.

You will need to look through the code. Open predict.m and find how these variables
match up with update equations and fill in the empty code. Note function angle =
pi to pi(angle) should be used when adding headings and steering angles to perform
correct modulus wrap around.

1.2 Observation: Sensor model

The observation stage consists of a series of observations that arrive from sensors. In
this case, the vehicle is equipped with a laser range finder. Observations of beacons

3

in the environment can be used to provide a position estimate when the position of the
beacons is known. This model is depicted in Figure 2.

To compute the vehicles position from a beacon observation, we need to calculate the
distance and angle towards the beacon:

!"#$% &
'%(%#"$()*

Figure 2: Observation Model

zik = hi(xk) =

[√
(xi − xvk)2 + (yi − yvk)2

arctan
yi−yvk
xi−xvk

− φvk

]
(7)

where xi and yi are the x- and y-position of the beacon.

The Jacobian of the observation model is :

∂hr
∂x

=

 −
xi−xvk√

(xi−xvk)
2
+(yi−yvk)

2
− yi−yvk√

(xi−xvk)
2
+(yi−yvk)

2
0

yi−yvk
(xi−xvk)

2
+(yi−yvk)

2 − xi−xvk

(xi−xvk)
2
+(yi−yvk)

2 −1

 (8)

∂hl
∂x

=


xi−xvk√

(xi−xvk)
2
+(yi−yvk)

2

yi−yvk√
(xi−xvk)

2
+(yi−yvk)

2

− yi−yvk
(xi−xvk)

2
+(yi−yvk)

2

xi−xvk

(xi−xvk)
2
+(yi−yvk)

2

 (9)

where ∂hr

∂x is the jacobian for the robot and ∂hr

∂x is the jacobian for the landmark.

4

You will need to look through the code. Open observe model.m and find how these
variables match up with observation equations and fill in the empty code. Hint: H is a
matrix of size 2 x (length of state vector) and ∂hr

∂x is the top of the H matrix and ∂hl

∂x is
stored in H(:,fpos:fpos+1) positions calculated in the code. And the index fpos
in the state vector x is the position of the landmark (xi, yi)

2 Running

Once the functions have been filled in you can run the EKF slam simulator as follows:

load example_webmap;
ekfslam_sim(lm,wp);

After you have successfully run the example run frontend.m and create a map where
the landmarks are spaced quite far apart along the trajectory and watch how the true
path and estimated path diverge. Note the effect of landmark placement on the success-
ful localization of the vehicle.

5

